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PB.1
Einstein relations

Starting from Eq. (B5), Einstein found that the probabilities for absorption
and stimulated emission are equal for a two-level system. So, he supposed
that the number of atoms in the ground state and in the excited state (N1 and
N2, respectively) are given by the Boltzmann distribution

N2

N1
= exp

(
−~ω21

kBT

)
,

where kB is the Boltzmann constant. In addition, he used Planck’s formula
for the energy density

ρ(ω) =
~ω3

π2c3

(
exp

(
~ω
kBT

)
− 1

)−1

.

Follow Einstein’s approach and show that Eq. (B6) can be derived from
Eq. (B5).

Solution:

We start from Eq. (B5) which reads

B12N1 ρ(ω) = A21N2 +B21N2 ρ(ω) .

Further we have
N2

N1
= exp

(
−~ω21

kBT

)
. (SB.1)

Because of
ρ(ω) =

~ ω3

π2 c3
1

exp
(

~ω21
kBT

)
− 1

(SB.2)

we obtain

B12N1

(
~ ω3

π2 c3

)(
1

N1/N2 − 1

)
= A21N2 +B21N2

(
~ ω3

π2 c3

)(
1

N1/N2 − 1

)
.

(SB.3)
We re-arrange Eq. (SB.3) using Eqs. (SB.1) and (SB.2) so that

B12

(
~ω3

π2c3

)(
N1N2

N1 −N2

)
= A21N2 +B21

(
~ω3

π2c3

)(
N2

2

N1 −N2

)
,

B12

(
~ω3

π2c3

)
N1N2 = A21N1N2 −A21N

2
2 +B21

(
~ω3

π2c3

)
N2

2 ,

B12

(
~ω3

π2c3

)
N2

2 · exp

(
~ω21

kBT

)
= A21N

2
2 · exp

(
~ω21

kBT

)
−A21N

2
2 +B21

(
~ω3

π2c3

)
N2

2 .
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Division by N2
2 finally leads to(

B12

(
~ω3

π2c3

)
−A21

)
· exp

(
~ω21

kBT

)
= B21

(
~ω3

π2c3

)
−A21 . (SB.4)

Irrespective of the temperature T , Eq. (SB.4) must be fulfilled, which can only be
achieved if

B12

(
~ω3

π2c3

)
= A21 and

B12 = B21 .

PB.2
Stability condition

A paraxial light beam bouncing forth and back in a resonator can be consid-
ered as if the beam would pass through a periodic sequence of lenses. Each
component is described by an ABCD matrix (Section A.1.3).
1. To derive the general stability condition (B33) for resonators, we calculate(

h2

γ2

)
=

(
A B

C D

)(
A B

C D

)(
h0

γ0

)
. (B.42)

Solve the resulting quadratic equation by using the ansatz

hm = h0K
m (B.43)

with K=const andm=0, 1, 2, . . .. In the case of lens systems, detM=

AD−BC=1. A periodical and stable solution for Eq. (B43) is obtained
if the linear combination K=K+−K− is a real number.

2. Let us now consider the special case of a Gaussian resonator. The cor-
responding ABCD matrix can be calculated from the matrices of a thin
lens and free space according to(
A B

C D

)
=

(
1 0

2/r1 1

)(
1 LR

0 1

)(
1 0

2/r2 1

)(
1 LR

0 1

)
. (B.44)

Derive the condition (B36) from Eq. (B33) with the dimension parame-
ters given in Eqs. (B34) and (B35).
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Solution:

1. We know from Section A.1.3 that

Mn =

(
A B

C D

)n
=

1

sin θ

(
A sinnθ − sin(n− 1)θ B sinnθ

C sinnθ D sinnθ − sin(n− 1)θ

)
.

In our case, we have n = 2 and det M2 = (AD −BC) = 1, which leads to

M2 =

(
A B

C D

)2

=
1

sin θ

(
A sin 2θ − sin θ B sin 2θ

C sin 2θ D sin 2θ − sin θ

)
.

When using the trigonometric identity sin 2θ = 2 sin θ cos θ, it follows that

M2 =

(
A B

C D

)2

=

(
2A cos θ − 1 2B cos θ

2C cos 2θ 2D cos θ − 1

)
.

Because of

det M2 = (2A cos θ − 1)(2D cos θ − 1)− (2B cos θ)(2C cos θ) = 1 ,

we obtain the equations

4AD cos2 θ − 2A cos θ − 2D cos θ + 1− 4BC cos2 θ = 1 ,

4AD cos θ − 2A− 2D − 4BC cos θ = 0 ,

(AD −BC) cos θ =
A+D

2
,

and finally
cos θ =

A+D

2
.

Since | cos θ| ≤ 1 and |A+D
2 | ≤ 1, we end up with the stability condition

−1 ≤ A+D

2
≤ +1 .

2. We first calculate the matrix products, that is,(
A B

C D

)
=

(
1 0

2/r1 1

)(
1 LR

0 1

)(
1 0

2/r2 1

)(
1 LR

0 1

)
=

(
1 LR

2/r1
2LR
r1

+ 1

)(
1 LR

2/r2
2LR
r1

+ 1

)

=

(
1 + 2LR

r2
2LR +

2L2
R

r2
2
r1

+ 2
r2

+ 4LR
r1r2

4LR
r1

+
4L2

R
r1r2

+ 2LR
r2

+ 1

)
. (SB.5)
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In Eqs. (B34) and (B35) we have defined

g1 = 1 +
LR

r1
,

g2 = 1 +
LR

r2

which can be re-written as

LR

r1
= g1 − 1 ,

LR

r2
= g2 − 1 .

With reference to Eq. (SB.5), we express the matrix elements as

A = 1 +
2LR

r2

= 1 + 2(g2 − 1)

= 2g2 − 1 ,

D =
4LR

r1
+

4L2
R

r1r2
+

2LR

r2
+ 1

= 4g1g2 − 2g2 − 1 .

From this, we obtain

A+D

2
=

(2g2 − 1) + (4g1g2 − 2g2 − 1)

2
= 2g1g2 − 1 .

According to Eq. (B33), we know that

−1 ≤ A+D

2
≤ +1 .

Therefore, we conclude that

0 ≤ g1g2 ≤ 1 .
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PB.3
Gaussian laser beams

We consider a helium–neon laser beam in a TEM00 mode which has a waist
radius of w0 = 1.3mm. The beam shall be expanded and subsequently fo-
cused by an optical system.
1. Calculate the ABCD matrix of an optical system which consists of a neg-

ative and a positive lens which have a distance ofL. What is the condition
for an afocal Galilei telescope? How does the matrix change in this case?

2. The laser beam shall be expanded to a diameter of 2w0 =8mm by using a
Gailiei telescope which consists of thin lenses with a face-to-face length
of L = 50mm. Calculate the focal lengths of the lenses in the Galilei
system.

3. Next, the collimated expanded beam shall be focused so that we obtain
a depth of field of ∆z = 1mm. Here, the depth of field is defined as
the range at which the beam intensity does not fall below 80% of the
maximum intensity at the waist. What is the minimum focal length to
achieve this? How large is the diameter of the focus?

4. We assume that the focusing lens, with a minimum focal length as cal-
culate in 3., is placed along the laser path such that the waist (diameter
of 8mm) lies 300mm in front of the lens. Calculate the waist position
behind the lens relative to the image-side focal point F′ of the lens. Does
the waist lie in front of or behind the focal point F′?

5. Consider the change of the Gaussian beam parameters when the beam
passes through an afocal Kepler- and Galilei-type telescope system. Such
an optical system can be used to expand or compress the beam diameter.
Calculate the minimum beam diameter and the divergence angle. How
are these parameters related to each other? Consider also the product of
minimum beam diameter and divergence angle.

Solution:

L1

L2

D

L

f2

f1

2w0

Figure SB.1 Ray diagram of a Galilei telescope.
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1. The matrix for a Galilei telescope follows as (Figure SB.1, Table A.1)(
A B

C D

)
=

(
1 0

−1/f2 1

)(
1 L

0 1

)(
1 0

−1/f1 1

)
=

(
1− L/f1 L

−1/f1 − 1/f2 + L/(f1f2) 1− L/f2

)
,

where f1 is the focal length of the positive lens and f2 the focal length of the
negative lens. The system is afocal if for γ = 0, γ′ is always zero for all h. From
the ansatz (

h′

γ′

)
=

(
A B

C D

)
·
(
h

γ

)
.

follows that
γ′ = C · h+D · γ .

Thus, we have an afocal system if C = 0. In the case of an afocal Galilei system,
this is equivalent to

−1/f1 − 1/f2 + L/(f1f2) = 0

⇒ L = f1 + f2 .

The matrix for the afocal Galilei telescope then reads(
A B

C D

)
=

(
−f2/f1 f1 + f2

0 −f1/f2

)
.

2. The laser beam shall be now expanded to a diameter of 2w′0 = 8 mm by using a
Galilei telescope which consists of thin lenses with a face-to-face length of L =

50 mm. The expansion factor of the diameter is

2w′0
2w0

= 3.08 .

This is equivalent to the reciprocal value of the angular magnification

3.08 =
1

Γ
= −f2

f1
.

Here, we also used (because of γ = 0)

h′ = −f2

f1
h+ (f1 + f2) γ = −f2

f1
h ,

1

Γ
= −f2

f1
=

2w′0
2w0

= 3.08 . (SB.6)
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The physical length of the telescope is given by L = f1 + f2. If we use this,
eliminate f2 from Eq. (SB.6), and use the given values for 2w′0 and w0, we finally
obtain

f1 =
L

1− 1/Γ
= −24 mm ,

f2 = L− f1 = 74 mm .

3. The change of intensity along the propagation direction of the Gauss beam can be
derived from Eqs. (A85) and (A86) to

I(z) =
I0

1 + (z − zw)2/z2
R

,

where zw is the position of the beam waist and zR the Rayleigh length. The given
definition of the depth of focus simply means that

I(z = zw +
∆z

2
) = 0.8 · I0 . (SB.7)

From Eq. (SB.7) follows that

0.8 · I0 =
I0

1 +
(

∆z/2
zR

)2

⇒ 5

4
= 1 +

(
∆z/2

zR

)2

.

With ∆z = 1mm, we obtain zR = 1mm. Using the definition of the Rayleigh
length in Eq. (A83) the focus diameter then yields for λ = 632.8 nm

2w0 = 2

√
λzR
π

= 0.0284 mm ≈ 28 µm .

The divergence angle is calculated from Eq. (A87) via

ε =
λ

πw0
=
w0

zR
= 0.01419 rad .

With the given beam diameter 2w0 = 8 mm in front of the focusing lens, we find
a focal length of

ε =
2w0

2f

⇒ f =
w0

ε
= 282 mm .

4. The beam propagation behind the telescope is shown in Figure SB.2. For the
calculation of the beam parameters behind the lens, we use the formalism for the
complex beam parameter q in Eq. (A81). It is obvious that q is purely imaginary
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Δz
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z2
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focus
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Gaussian beam

geometric 
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Figure SB.2 Gauss beam transformation through a telescope systems.

�nal 
plane
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z1

z2

zR1 zR2
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waist 2

z

lens with
focal length f 

Figure SB.3 Gauss beam transformation by a focusing lens.

in the waist plane 1 (i.e. rC = ∞). The same also holds for waist plane 2. From
Eq. (A89) follows that

q2 =
Aq1 +B

Cq1 +D

with
q1 = i · zR1 = i

(
π · w2

01

λ

)
.

The matrix elements can then be calculated with Figure SB.3 via

(
A B

C D

)
=

(
1− z2/f (1− z2/f) · z1 + z2
−1/f −z1/f + 1

)
. (SB.8)

From the boundary condition that q2 is purely imaginary, we obtain the condition

q2 =
(BD +AC · z2

R1) + i(AD −BC)

D2 + C2 · z2
R1
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from which directly derive

BD +AC · z2
R1 ≡ 0 . (SB.9)

This is identical with a condition for z2, as this is the only variable element in the
ABCD matrix in Eq. (SB.8). Solving Eq. (SB.9) for z2 while using the matrix
elements from Eq. (SB.8), we find

z2 = f · z
2
1 − z1 · f + z2

R1

(z1 − f)2 + z2
R1

. (SB.10)

Inserting the values z1 = 300 mm, f = 282 mm, λ = 632.8 nm, and w01 =

D/2 = 4 mm leads to

zR1 =
πw2

01

λ
= 79.43 m ,

z2 = 282 mm .

For the waist position relative to the image-side focal point of the lens, we obtain

∆z2 = f − z2 = −0.23 µm .

The waist thus lies only 0.23 µm behind the geometric focus; actually opposite
to what is shown in Figure SB.2. This is easy to understand, as the beam has a
certain divergence going into the focusing lens which needs to be compensated
for. In the case of a vanishing divergence (i.e., very strongly expanded beams),
the location of the geometric focus and the beam waist are identical.

5. We start again from Eq. (A89), that is,

q2 =
Aq1 +B

Cq1 +D

with the ABCD matrix for the telescope(
A B

C D

)
=

(
−f2/f1 f1 + f2

0 −f1/f2

)
=

(
1/Γ L

0 Γ

)
in which L = f1 + f2 is again the length of the telescope. For the object-side
waist at z = 0 directly in front of the telescope, at which q is purely imaginary,
we have

q = z − izR = −izR .

Behind the telescope, we find for the complex beam parameter

q′2 = z′ − iz′R

=
−izR/Γ + L

−izR · 0 + Γ

=
L

Γ
− izR

Γ2
.
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If we compare the imaginary parts, we see that

z′R =
zR
Γ2

.

Using Eqs. (A83) and (A87)

zR =
πw2

0

λ
,

ε =
w0

zR
,

w′0 =
w0

|Γ| ,

ε′ = ε · |Γ|

it follows that
z′R =

w′0
ε′

=
1

Γ2
· w0

ε

and
w′0 · ε′ = w0 · ε .

Thus, the Rayleigh lengths transform with the inverse square of the telescope’s
reciprocal value of the angular magnification. Moreover, the product of beam
waist and divergence angle is a constant. This is equivalent to theM factor in Eq.
(B37). As a rule to remember: If the waist is magnified/de-magnified by a factor
of |Γ|, the divergence is de-magnified/magnified by the same factor |Γ|.

PB.4
Laser power

Calculate the cw power of an Nd:YAG laser as a function of the degree of
reflectance of the output mirror for various pumping power values of 1 kW,
2 kW, and 4 kW. Determine the optimal decoupling degree T = 1−R. Use
MathCAD or a similar program to calculate the profile of the output power
for various output mirrors first and then attempt to find an analytical solution
for the optimal degree of out-coupling (i.e., maximum output power). Use
the following values:
• Saturation intensity: Is =2.2 kW/cm2.
• Laser rod dimensions: 0.5 cm (diameter), 10 cm (length).
• Transmittance in resonator: Ti =0.95.
• Pump efficiency ηpump =5.5%.

Solution:

The formula describing the output power is given by (see also Eq. (B.28))

Pout =

(
R− 1

R + 1

)
·
(

η pump

ln(Ti

√
R)

Ppump +
Vg

Lg
Is

)
, (SB.11)
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Figure SB.4: Output cw power for various pump powers as a function of the outcoupler
reflectance.

with the reflectance of the output mirror R, the pumping power Ppump, the satura-
tion intensity Is, and the volume of the gain material Vg = π

4 d
2Lg. Figure SB.4

depicts the output curves obtained from a numerical calculation Eq. (SB.7) for three
different pumping power values Ppump = 1 kW, 2 kW, 4 kW. The exact analytical
determination of the peak of the function via the derivative dPout/dR = 0 is impos-
sible, since R appears directly and in the argument of the logarithm. The conditional
equation then becomes transcendental and can therefore not be solved explicitly. The
literature contains various approaches for approximate solutions1).
If, for approximation, the value ofR2 was taken to be close to 1, a Taylor series could
be developed for small values x = 1 − R. Using the following approximation is
particularly elegant

ln(R) ≈ 2(R− 1)

1 +R
. (SB.12)

For values R close to 1, Figure SB.5 shows the relative error ∆f/f of this approxi-
mation. It is evident that the error is lower than 1% up to R > 0.7.With this approx-
imation, we can rewrite Eq. (SB.11) in the following manner:

Pout =
0.5 ln(R) · ηpump

ln(Ti) + 0.5 ln(R)
[Ppump + Ps · (ln(Ti) + 0.5 ln(R))] ,

1) see e.g. Rigrod, W.W. (1978) IEEE J. Quantum Electron., 14, 377 or Schindler, G. M. (1980) IEEE J.
Quantum Electron., 16, 546.



12 Solutions to Problems – Optical Devices in Ophthalmology and Optometry
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Figure SB.5: Relative error of the approximation in Eq. (SB.12).
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Figure SB.6 Output cw powers for various pump powers as a function of the outcoupler
reflectance. Comparison of exact solution (solid line) and approximation (dashed line).
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Table SB.1 Optimum degrees of out-coupling for various pumping conditions.

Ppump (kW) R Ti Pout (W) Efficiency η

1000 0.943 0.057 7.3 0.7%
2000 0.882 0.118 33.4 1.7%
4000 0.802 0.198 102.5 2.6 %

0

20

40

60

80

100

1000 1500 2000 2500 3000 3500 4000

Pin

Pcw, opt

Ti = 0.85

Ti = 0.90

Ti = 0.95

Figure SB.7 Maximum cw power for various internal losses as a function of the pumping
power.

in which we have used the saturation power Ps = Is · π4 d2. With the substitution
y = ln(R), we obtain

Pout = 0.5 · ηpump · y ·
[Ppump + Ps · (ln(Ti) + y/2)]

ln(Ti) + y/2
.

Figure SB.6 gives an indication of the good quality of the approximation. The dashed
lines indicate the approximations, while the continuous lines correspond to the ana-
lytically exact solutions. If one takes the approximate curve and forms the derivative
with respect to y and sets it equal to zero, then the maximum can be derived from the
relatively simple quadratic equation

ymax = −2 ln(Ti)− 2

√
Ppump

Ps
ln(Ti) .

By usingR = ey , we obtain the approximate values for the optical degree of “outcou-
pling” shown in Table SB.1. Figure SB.7 shows the maximum cw power for a given
saturation power and various internal losses as a function of the pumping power.
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PB.5
Nd:YAG laser

For photocoagulation, a frequency-doubled cw Nd:YAG laser is used. The
Nd:YAG resonator consists of a concave mirror with a radius of curvature
of 250mm and a flat decoupling mirror. What is the maximum distance
Lmax between the mirrors to obtain a stable configuration? Is it possible to
design a stable resonator made of two convex mirrors with the same radius
of curvature and same distance Lmax?

Solution:

In Eqs. (B.34) and (B.35), we have

g1 = 1 +
LR

r1
,

g2 = 1 +
LR

r2
.

In our case, LR = Lmax, r1 = −250mm, and r2 = ∞. Hence, we can check the
stability condition (B.36) given by 0 ≤ g1, g2 ≤ 1 and find

0 ≤
(

1 +
Lmax

−250 mm

)
≤ 1

⇒ 0 ≤ Lmax ≤ 250 mm

Thus, the maximum length of the resonator is Lmax = 250mm. In this case, we have
a hemispherical resonator (Figure B.11).
In the case of two identical convex mirrors, we have r1 = r2 = 250mm and thus
stability if

0 ≤
(

1 +
Lmax

r1

)
·
(

1 +
Lmax

r1

)
≤ 1

⇒ r1 ≤ −
Lmax

2
.

In the stability diagram in Figure SB.8, this corresponds to an area outside of the
regions of stability. Accordingly, no stable resonators exist with convex mirrors only,
provided the resonator is empty as it was assumed in this approach. The situation
may be different in the case of resonators filled with gain material.
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1 2 3
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2

3

Figure SB.8 Stability diagram for convex-convex laser resonators.

PB.6
Thermal lens

An active laser mediumwithin a laser resonator usually generates a so-called
thermal lens due to thermal effects. Consider whether this will be a conver-
gent or a divergent lens. For this purpose, look up the temperature depen-
dence of the refractive index of laser materials on the internet! For building a
model, let us consider a confocal-planar resonator of length LR. For simpli-
fication, let the thermal lens with focal length f (sign!) be positioned exactly
in the middle. The planar mirror is the output mirror. Calculate the stability
condition as a function of the focal length of the thermal lens. How is the
decoupled Gauss bundle changed by the lens (waist, divergence)?

Solution:

The temperature dependence of the refractive index of crystalline Nd:YAG is
dn/dT = +9.86 × 10−6 K−1 > 0, that is, the refractive index increases with
increasing temperature2). Heat is introduced to the resonator by the strong radiation
field and the pumped light absorbed in the rod. Since the cooling of solid-state lasers
is provided from the periphery, the rod (laser material) is hotter on the inside. This

2) Please refer to http://wr.lib.tsinghua.edu.cn/sites/default/files/1101116431461.pdf.
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case 1

case 2

f

L/2

L

R2 = ∞ (plane)
R1 = 2L

Figure SB.9 Geometry for thermal lens inside a resonator.

applies to longitudinal laser pumping as well. Accordingly, we have

T (r = 0) > T (rmax) and/or

n(r = 0) > n(rmax).

In a first approximation, the refractive index profile can be assumed to be quadratic,
that is,

n(r) = n0 − ar2 .

This corresponds to a radial gradient lens with positive refractive power. The ther-
mally heated rod thus acts as a convergent lens in the resonator with f > 0.
A planar-confocal resonator with decoupling at the plane mirror is parametrized by
g1 = 1/2 and g2 = 1. This means that the concave mirror has a radius of R1 = 2L,
(Figure SB.9). Applying Eq. (A86) and using the parameters for resonator stability,
the waist radius w0 on the plane output mirror is given by (neglecting any thermal
lens effects)

w2 = w0 =

√
λL

π
·
√

g1

g2 · (1− g1g2)
=

√
λL

π

from which the divergence of the laser beam follows as

ε =
λ

πw0
=

√
λ

πL
.

Here, we have assumed that the output mirror has no refractive power.
We assume the thermal lens to have a refractive power of D = 1/f and to be located
in the middle of the resonator. The ABCD matrix (internal contour matrix) of the
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resonator (for a start upstream of mirror 1) is given by

M =

(
1 0

− 2
R1

1

)
·
(
1 L

2
0 1

)
·
(

1 0

−D 1

)
·
(
1 L

2
0 1

)
·
(
1 0

0 1

)
·
(

1 L
2

0 1

)
·
(

1 0

−D 1

)
·
(

1 L
2

0 1

)
.

With R1 = 2L, this becomes

M =

(
1− 2LD + 1

2L
2D2 2L− 3

2L
2D + 1

4L
3D2

− 1
L + 1

2LD
2 −1− 1

2LD + 1
4L

2D2

)
. (SB.13)

The general stability condition

|A+D|
2

≤ 1

leads to the following condition using the matrix elements of Eq. (SB.13):∣∣∣−5

2
LD +

3

4
L2D2

∣∣∣ ≤ 2 .

Resolving this quadratic inequality while taking into consideration that L and D are
positive leads to the two solutions

Case 1 : f ≥ 3L

4

Case 2 :
L

4
≤ f ≤ L

2
.

Case 1 describes the situation of an increasing thermal lens at higher core temper-
ature. A threshold exists at which the resonator obviously becomes unstable. This
occurs if the focal length of the lens is smaller than 3/4 of the resonator length. In ad-
dition to case 1 of a relatively weak thermal lens effect with large f , a second solution
of finite size exists for a larger thermal lens (case 2). This range has an intermediate
waist. Both solutions are shown by dashed lines in the Figure SB.11. The solution
areas are presented in Figure SB.10a as an f/L diagram and in Figure SB.10b as a
stability condition.
Using Eq. (A89) with the ABCD values from Eq. (SB.13), the waist radius at the
output mirror in the presence of a thermal lens with refractive power D is given by

w2
2 =

2λ|B|
π · (A+ 1)2

·
√

2 +A+D

2− (A+D)

=
2Lλ

π
·
|2− 3

2LD + 1
4L

2D2|
(2− 2LD + 1

2L
2D2)2

·

√
2− 5

2LD + 3
4L

2D2

2 + 5
2LD −

3
4L

2D2

Figure SB.11 shows the waist radius versus the functional length (Figure SB.11a) and
versus the refractive power (Figure SB.11b).
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Figure SB.10 Stability condition and areas for a resonator with length L and in the
prescence of a thermal lens with focal length f .
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Figure SB.11 Waist radius at output coupler as a function of (a) the focal length and (b)
the refractive power of the thermal lens.
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PB.7
Q-switch

Consider a Q-switched Nd:YAG laser with a resonator/gain medium length
of Lg =30 cm. The rod-shaped gain medium has a diameter of d=1 cm and
a gain cross-section of σ= 3 × 10−19/cm−3. It is actively used at ≈ 50%.
Estimate the peak power, pulse duration, and pulse energy. We start with the
following assumptions:
1. The number of excited atoms ni is 4× the threshold inversion multiplied

by the active volume.
2. The resonator quality is switched by changing the transmission from 0%

- 100% and by using mirrors with a reflectance ofR=
√
R1R2 =0.5. The

peak power is approximately given by

Ppeak ≈
∆Ni~ω
2τres

, (B45)

where the photons’ lifetime in the resonator is τres = L/(c − cR) and c
is the speed of light. ∆Ni is the initial inversion before switching and
the switching time is taken to be very short. The equation can be under-
stood as a process at which the laser level is completely emptied within
the resonator attenuation time. Note that losses due to decoupling are
predominant. The pulse duration is approximately 3τres.

Solution:

The threshold inversion density is given by

LgNth = −1

2
· lnR

σ
.

The cross-selectional area of a 50%-filled circular cross-section of a Nd:YAG rod
with a diameter of d = 1 cm is

A =
1

2
· π

4
d2 = 0.393 cm2 .

The active volume then becomes

V = A · Lg = 3.93 cm3 .

With a gain cross-section of σ = 3×10−19 cm2, the inversion at the threshold follows
to

Nth = − lnR

2Lg · σ
= 1.16× 1017 cm−3 .

Thus, the number of excited atoms is

ni = 4Nth · V = 1.82× 1018 .
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The round-trip time of the resonator with a length of L = 30 cm and a reflectance R
is determined by

τres =
L

c(1−R)
= 2.0 ns .

The pulse duration is then approximately

τ = 3τres = 6.0 ns .

Accordingly, with Planck’s constant h = 6.63× 10−34 Js, the peak power is

Ppeak =
ni · hν
2τres

= 8.51× 107 W .

Assuming the pulse to be triangular in shape and P = 0.5 Ppeak, the pulse energy
follows as

Ep =
1

2
τ · Ppeak = 0.26 J .

According to literature3), the energy density bulk damage threshold of a Nd:YAG
crystal as a function of the pulse duration is approximately given by

wdam = 50
J

cm2

√
τ

1 ns
.

For a pulse duration of 6 ns, the energy is then

Edam = A · wdam = 50
J

cm2

√
6 · 0.393 cm2 = 48 J .

The damage threshold is thus not a critical factor in the case considered here.
The damage thresholds of the coatings are, however, more critical. The website
www.lasermaterials.com can be used to find a threshold of 1.4 GW · cm−2 for anti-
reflection coatings and pulses of less than τ < 20 ns. In the present case, the intensity
above which the coating is damaged is

Idam =
Ppeak

A
= 0.22 GW · cm−2 .

This means that the layers should tolerate this radiation exposure as well.

3) Do, B.T. and Smith, A.V. (2009) Appl. Opt., 48, 3509.
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PB.8
Ultra-short light pulses and self-phase modulation

The optical Kerr effect (Section 9.5), that is, the dependence of the refractive
index on the intensity, is a third-order non linear effect. It is described by
n = n0 + n2I, where the nonlinear refractive index n2 has the following
values:
• Glass (BK7): n2 =5× 10−15 cm2/W
• Water: n2 =10−16 cm2/W
• Doped fiber: n2 =10−10 cm2/W

1. Show that a thin plate of BK7 with a thickness of 5mm has the effect
of a lens with a refractive index of nl in the case of a 100 fs pulse at a
wavelength of approximately 550 nm and approximately plane wave front
(Gaussian mode, waist radius 0.5mm). Calculate the focal length as a
function of realistic pulse energies (in the range from 1 nJ - 10 µJ). Make
use of the fact that the effect of a lens on a plane wave can be described
by the phase term

exp

(
ik(x2 + y2)

2nl

)
. (B46)

2. The phase of the pulse also changes during passage through the medium
according to

ϕ(t) = −2π
L

λ
n2 I(t) . (B47)

Compare a Gaussian pulse and a sech2 pulse with a pulse duration of
τ0 for which the time dependence of the field strength amplitudes shall
be given by exp(−t2/τ2

0 ) and sech(t/τ0), respectively. Calculate the
frequency response ω(t) = dϕ(t)/dt for both pulse forms after passage
through 10mm of glass. Neglect self-focusing and group velocity disper-
sion. Assume the bundle to be approximately collimated when it travels
through the material. Do we have an up- or a down-chirp?

3. Calculate the spectrum of the Gaussian pulse upstream and downstream
of the material including the full widths at half maximum of the spectra.
Regarding the spectra after passage through the material, let us consider
the chirp effect to be a small correction that can be approximated to sim-
plify the calculation. Does the product of pulse duration and spectral
width give you any hints?

Solution:

1. The spatial distribution of the Gaussian bundle is given by

I(r) = Ipeak · exp

[
−2

(
r

w0

)2
]
.
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From this follows the beam power by means of integration

P =

∞∫
0

I(r)2π dr =
πw2

0

2
Ipeak .

As a consequence, we obtain the relation to the pulse energy Ep for a pulse dura-
tion of τ0 given by

Ipeak =
2Ep

πτ0w
2
0

.

Considering the Kerr effect to be a small disturbance, the distribution of intensities
can be approximated as being quadratically around the peak intensity in order to
determine the refractive index profile. Hence, we have

I(r) = Ipeak · exp

[
−2

(
r

w0

)2
]

≈ Ipeak ·
(

1− 2r2

w2
0

)
=

2Ep

πτ0w
2
0

·
(

1− 2r2

w2
0

)
.

The equation describing the Kerr effect n = n0 + n2 · I leads to

n(r) = n0 +
2n2 · Ep

πτ0w
2
0

·
(

1− 2r2

w2
0

)
= n0 +

2n2 · Ep

πτ0w
2
0

− 4n2 · Ep

πτ0w
4
0

· r2 . (SB.14)

A quadratic gradient medium with a refractive index of (Table A.1)

n(r) = ncenter ·
(

1− ε2r2
)

(SB.15)

and with a length of L has a focal length of

f =
1

ncenterε · sin(εL)
.

Using the approximation ε� π/L (relatively small non-linearity) leads to

f ≈ 1

ncenterLε2
.

By comparing the coefficients of Eqs. (SB.14) and (SB.15), we deduce

ε2 =
8n2 · Ep

πτ0ncenterw4
0

.

With the approximation ncenter ≈ n0 (n0 = 1.51872 for BK7), the focal length
can be written as

f =
πτ0 · w4

0

8Ln2Ep
.

By applying the given numbers, the focal length values in Table SB.2 can be cal-
culated.
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Table SB.2 Focal length values f for different pulse energies Ep.

Ep (nJ) f (mm)

10,000 6.1
1000 61
100 610
10 6100
1 61,000

2. For a Gaussian pulse with an amplitude of

AG(t) = A0 · exp

(
− t

2

τ2
0

)
and an intensity of

IG(t) = Ipeak · exp

(
−2t2

τ2
0

)
,

the phase as a function of time is given by

ϕG(t) = −
2πn2LIpeak

λ
exp

(
−2t2

τ2
0

)
.

The corresponding frequency response is then determined by

ωG(t) =
d

dt
ϕG(t) = −2π

L

λ
n2 ·

d

dt

[
A2

0 · exp

(
−2t2

τ2
0

)]
=

8πn2LIpeak

λτ2
0

· t · exp

(
−2t2

τ2
0

)
.

In analogy, for the sech-shaped pulse, the pulse amplitude is given by

Asech(t) = A0 · sech

(
t

τ0

)
and the intensity by

Isech(t) = Ipeak · sech2

(
t

τ0

)
.

The phase as a function of time is then

ϕsech(t) = −
2πn2LIpeak

λ
· sech2

(
t

τ0

)
.

The corresponding frequency response is determined by

ωsech(t) =
d

dt
ϕsech(t) =

4πn2LIpeak

λτ0
· sinh(t/τ0)

cosh3(t/τ0)
.
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Figure SB.12 Pulse envelope and frequency chirp in a Gaussian and a sech2 pulse in a
nonlinear medium.

The two frequency profiles are shown together with the pulse envelopes in Figure
SB.13. In both cases, for the main part of the pulse that contains energy fractions,
dω/dt > 0. Thus, an up-chirp exists, whereby the Gaussian pulse (red) generates
a larger chirp than the sech pulse (blue) due to its flank having a larger slope.

3. For a Gaussian pulse prior to passage through the medium, the amplitude is given
by

Aprior(t) = A0 · exp

(
− t

2

τ2
0

)
.

A Fourier transformation leads to

Aprior(ν) = A0 · exp
(
−π2τ2

0 ν
2
)
.

As a consequence, the power spectrum is determined by

Sprior(ν) = |Aprior(ν)|2 = A
2
0 · exp

(
−2π2τ2

0 ν
2
)
.

The full width at half maximum of the frequency spectrum is then

∆ν1/2 =

√
2 ln 2

π · τ0
=

0.375

τ0
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so that the pulse duration-bandwidth product reads

τ0 ·∆ν1/2 = 0.375 .

For a Gaussian pulse after passage through the medium, the amplitude is given
by

Aafter(t) = A0 · exp

(
− t

2

τ2
0

− iω(t)t

)
.

With a quadratic approximation of the frequency response in the exponent

ω(t) = B · t · exp

(
−2t2

τ2
0

)
= Bt ·

(
1− 2t2

τ2
0

)
,

whereas we used the definition

B =
8πn2LIpeak

λτ2
0

,

we derive

Aafter(t) = A0 · exp

(
− t

2

τ2
0

− iBt2 ·
(

1− 2t2

τ2
0

))
≈ A0 · exp

(
− t

2

τ2
0

(
1 + iBτ2

0

))
.

After a Fourier transformation, the amplitude becomes

Aafter(ν) = A
2
0 · exp

(
− π2τ2

0 ν
2

1 + iB2τ4
0

)
.

From this, the power spectrum follows to

Safter(ν) = |Aafter(ν)|2 = A
2
0 · exp

(
− 2π2τ2

0 ν
2

1 +B2τ4
0

)
.

The full width at half-maximum of the frequency spectrum is

∆ν1/2 =

√
2 ln 2

πτ0

√
1 +B2τ4

0 =
0.375

τ0

√
1 +B2τ4

0

so that the pulse duration-bandwidth product results to

τ0 ·∆ν1/2 = 0.375 ·
√

1 +B2τ4
0 .

The diagram in Figure SB.13a shows the intensity I(t) and frequency ω(t, B)

response for the finite value of the chirp with parameter B. The spectrum without
(prior to transit through the medium) and with chirp (after transit) is presented in
Figure SB.13b. The spectral broadening due to the chirp is clearly visible.
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Figure SB.13 (a) Pulse envelope, frequency spectrum, and (b) power spectrum of a
Gaussian pulse after passage through a nonlinear medium.
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PB.9
Ultra-short light pulses in the presence of dispersion

Considering the propagation of ultra-short light pulses, it is necessary to
take nonlinear effects and the effect of group velocity dispersion into account
(Section 9.5). An ultra-short light pulse is given by

ψ(z, t) = ψ0(z, t) e2πiν0t−ikz . (B48)

In space-time domain, ν0 is the center frequency of the pulse and k the prop-
agation constant determined by

k(ν) =
2πν n(ν)

c0
(B49)

with the speed of light in vacuum c0 and the refractive index n(ν). In the so-
called SVE approximation (slowly varying envelope), the propagation equa-
tion can be written as

∂ψ0

∂t2
+

4πi

Dν

∂ψ0

∂z
= 0 , (B50)

where the dispersion coefficient is given by

Dν =
1

2π

d2k

dν2
=

d

dν

(
1

cg

)
(B51)

with the group velocity
1

cg
=

1

2π

dk

dν
. (B52)

The SVE approximation shows formal similarity to the paraxial wave equa-
tion (A79), which was used to derive the Gaussian modes. Accordingly, the
solution for ψ0(z, t) will formally correspond to the solution for Eq. (A80)
after appropriate substitution. We have

ψ0(z, t) = A0

√
−iz0
z − iz0

exp

 iπ
(
t− z

cg

)2

Dν(z − iz0)

 . (B53)

From this can be derived the pulse duration τ(z) and the so-called chirp
parameter a(z) which are given by

τ(z) = τ0

√
1 +

(
z

z0

)2

(B54)

and a(z)=z/z0 with the dispersion length z0 =πτ2
0 /Dν .



28 Solutions to Problems – Optical Devices in Ophthalmology and Optometry

Table B.6 Dispersion parameters of different sorts of glass at a wavelength of 546 nm.

Material Refractive Index dn/dλ (mm−1) d2n/dλ2 (mm−2)

BK7 1.51872 −51.3514 269835

SF6 1.81265 −204.024 1305289

FK54 1.43815 −30.748 161347

Table SB.3 Comparison of variables to describe Gaussian bundles (space-angle domain)
and Gaussian pulses (time-frequency domain).

Space-angle domain Time-frequency domain
Variable Formula /sign Variable Formula /sign

Lateral space x, r Time t

Beam width w Pulse length τ

Wavelength λ Dispersion constant Dν

Angle of divergence θ0 Pulse broadening rate Dν
πτ

Rayleigh length z0 =
πw2

0
λ

Dispersion length z0 =
πτ20
Dν

Guoy phase z/z0 Chirp a = z/z0

Wavefront curvature 1
R

= z
z2+z20

Chirp rate ϕ′′ = 2π
Dν
· z
z2+z20

1. Describe the analogy between Gaussian pulses and Gaussian bundles.
Which variables are equivalent? Which variables correspond to the bun-
dle width, wavefront curvature, angle of divergence, and Rayleigh length?

2. Calculate the intensity of the pulse as a function of z.
3. Calculate the pulse width and chirp of an originally bandwidth-limited

pulse of 100 fs at a wavelength of approximately 546 nm after passage
through different BK7 glass rods with lengths of 5, 10, and 50mm.

4. What happens to a pulse that propagates with a down-chirp into a medium
with positive group velocity? Determine the optimal length of the glass
block made of BK7 after which a pulse with a pulse duration of τ1 and a
negative chirp of a1 has become a bandwidth-limited pulse. How short
will the pulse have become by then?

Use the material parameters for a wavelength of 546 nm from Table B.6.

Solution:

1. In Table SB.3, the comparison of variables to describe Gaussian bundles and
pulses is presented.
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2. The amplitude is given by

ψ0(z, t) = A0 ·
√
−iz0
z − iz0

· exp

(
i
π

Dν

(t− z/cg)2

z − iz0

)
.

From this follows the intensity

I(z, t) = |ψ0(z, t)|2 = I0 ·

√
z2
0

z2 + z2
0

· exp

(
i
π

Dν

(t− z/cg)2

z − iz0
− i π

Dν

(t− z/cg)2

z + iz0

)
= I0 ·

τ2
0

τ2(z)
· exp

(
−2 · (t− z/cg)2

τ2(z)

)
.

3. At first, we convert the dispersion coefficients from frequency to wavelength no-
tation. To change of variables of the derivatives, we write

λ =
c

ν
,

d

dν
=

dλ

dν
· d

dλ
= − c

ν2
· d

dλ
= −λ

2

c
· d

dλ
,

d2

dν2
= −λ

2

c
· d

dλ

(
−λ

2

c
· d

dλ

)
= −λ

2

c
·
(
−2λ

c
· d

dλ
− λ2

c
· d2

dλ2

)
=

2λ3

c2
· d

dλ
+
λ4

c2
· d2

dλ2
.

Applying the given values and using the data from Table B.6, we obtain

Dν =
1

2π
· d2k

dν2
=

1

2π
· d2

dν2

(
2π

c
· νn

)
=

1

c

d

dν

(
n+ ν

dn

dν

)
=

1

c

(
2

dn

dν
+ ν

d2n

dν2

)
=
λ3

c2
d2n

dλ2

= 4.88× 10−18 s2mm−1 .

The dispersion length is then given by

z0 =
πτ2

0

Dν
= 64.4 mm .

Accordingly, the pulse width and chirp values for z = L are listed in Table SB.4.
The non-linearity/Kerr effect influences the spectral shape of the beam and is a
function of the pulse power/intensity. The dispersion affects the temporal form
of the pulse and is a function of the pulse duration, but not of the intensity. Both
effects increase with increasing path length in the medium.

4. A pulse with a down-chirp dω/dt < 0 travelling in a medium with a positive
group velocity becomes phase-corrected with increasing propagation distance and
thus approaches the ideal bandwidth-limited temporal form. The characteristic
dispersion length for pulse duration τ1 is

z0 =
πτ2

1

Dν
.
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Table SB.4 Pulse width and chirp values for different BK7 rod lengths.

Variable Formula z = 5mm z = 10mm z = 50mm

Chirp a(z) = z/z0 0.078 0.155 0.777
Pulse width τ(z) = τ0

√
1 + (z/z0)2 100.30 fs 101.2 fs 126.6 fs

The chirp coefficient is given by

a(z) = z/z0 .

If a1 is the given chirp, for a travelled distance of

z = a1z0 =
πa1τ

2
1

Dν
,

the present quadratic approximations yield just the level of compensation for the
chirp to have disappeared. Here, the pulse duration is reduced to a value of

τ0 =
τ1√

1 + a2
1

.
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