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P7.1
Coherence time

Derive the coherence length of a Gaussian pulse of spectral bandwidth ∆ω.
Express it also in terms of λ0 and ∆λ. Compare this to the pulse duration or
the product of pulse duration and speed of light. Use the coherence length
of a superluminescence diode (see e.g. [30, 32]). What differences do you
notice?

Solution:

The intensity of a Gaussian spectrum reads

σ(ω) = σ0 exp

(
−4 ln(2)

(
ω − ω0

∆ωFWHM

)2
)

. (7.35)

At the spectral width ω = ∆ωFWHM/2 ± ω0, the intensity is reduced by half of
its maximum value. For simplicity, we set ω0 = 0 and obtain the autocorrelation
function as the inverse Fourier transform of the intensity spectrum of the pulse given
by

G(∆t) =
1

2π

+∞∫
−∞

σ0 exp

(
−4 ln(2)

(
ω

∆ωFWHM

)2
)

e−iω∆tdω

=
1

2π

+∞∫
−∞

σ0 exp

(
− 4 ln(2)

∆ω2
FWHM

(
ω + i

∆ω2
FWHM∆t

8 ln(2)

)2
)

· exp

(
−∆ω2

FWHM∆t2

16 ln(2)

)
dω

=
∆ωFWHM

4
√
π ln(2)

S0 exp

(
−∆ω2

FWHM∆t2

16 ln(2)

)
.

In the last step, we used the relation

+∞∫
−∞

e−a
2x2

dx =

√
π

a
with

a2 =
4 ln(2)

∆ω2
FWHM

.

The autocorrelation function is thus also a Gaussian function. The coherence time is
defined as the time within which the autocorrelation function is reduced to half of its
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maximum value, that is, for

∆t =
tc
2
,

G
(
tc
2

)
=

1

2
G0 =

1

2

(
∆ωFWHM

4
√
π ln(2)

σ0

)
.

Accordingly, we have

exp

(
−∆ω2

FWHMt
2
c

4 · 16 ln(2)

)
=

1

2
(S7.1)

⇒ ∆ω2
FWHMt

2
c

4 · 16 ln(2)
= ln(2)

⇒ tc =
8 ln(2)

∆ωFWHM
.

With ω0 = 2πc/λ0 and |∆ωFWHM| = 2πcλFWHM/λ
2
0, the coherence length thus

follows as

Lc = ctc =
8 ln(2) c

∆ωFWHM
=

4 ln(2)

π

λ2
0

∆λFWHM
. (S7.2)

The intensity of a Gaussian bandwidth-limited pulse is given by the squared inverse
Fourier transform of the amplitude spectrum of the pulse. Thus, it is similar (but not
identical) to the autocorrelation function and given by

I(t) = I0 exp

(
−∆ω2

FWHM t2

4 ln(2)

)
.

The pulse duration again is defined by I(tp) = I0/2 at its full width at half maximum
(FWHM). In analogy to the above consideration in Eq. (S7.1), we have

exp

(
−

∆ω2
FWHM t2p

4 · 4 ln(2)

)
=

1

2

⇒ tp =
4 ln(2)

∆ωFWHM
.

This shows that for Gaussian pulses the pulse duration is half the coherence length.

Next, we want to calculate the values for a specific source. In Figure S7.1, the
data sheet and the intensity spectrum of the superluminescence diode SLD1325
(http://www.thorlabs.de) are shown. From the application sheet we can calculate a
specified coherence length of 20 µm.
If we use Eq. (7.2) to calculate the coherence length (assuming a Gaussian shape of
the spectrum), we obtain with λ0 = 1325 nm and ∆λFWHM = 100 nm

Lc = ctc =
4 ln(2)

π

λ2
0

∆λFWHM
= 16 µm

which comes pretty close to the specified value.
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Figure S7.1 Data sheet and intensity spectrum for the superluminescence diode
SLD1325.

P7.2
Autocorrelation function, spectral density, and coherence length

Calculate the autocorrelation function G, the spectral density σ(ω), and co-
herence length Lc for various pulse forms and spectral distributions:
1. Gaussian pulse
2. Rectangle pulse
3. Lorentz spectrum
4. sech2 pulse
Use the definitions for G(∆t) and σ(ω) as given in Eqs. (A111) and (A109),
respectively. For the coherence length as well as the spectral density use ap-
propriate definitions, such as the full width at half maximum (FWHM), sec-
ond momentum of a normalized function, or second momentum of a squared
normalized function.

Solution:

a) Basic understanding of coherence length:
Before we discuss the various pulse shapes, we take a look at the possible definitions
for the coherence length. The same various definitions can be applied to the pulse
duration. Typically, one uses the definition of full width at half maximum (FWHM),
a concept which works well if the pulse’s energy distribution is fairly “localized”
around a maximum. The concept fails for instance in cases where the pulses have
substructures and/or substantial energy lies in the outside “wings” of the pulse. For
this, other definitions need to be considered.
A simple picture for the definition of the axial length of coherence can be derived
from Figure S7.2. Here, twomonochromatic plane waves are considered with slightly
different wavelengths λ1 and λ2, where ∆λ = λ1 − λ2 � λ1,2. The resulting
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Figure S7.2 Two waves with different wavelengths. The time after which the phase
difference corresponds to one period is marked.

modulation of the superposition has a characteristic length Lc if one of the waves has
exactly one more period. The traveling time for this distance corresponds to the time
of axial coherence tc. We have

Lc = N1λ1 = N2λ2 = (N1 + 1)λ2

⇒ N1(λ1 − λ2) = λ2 ,

N =
λ

∆λ
,

∆ν =
c

λ2
∆λ ,

Lc = Nλ =
λ2

∆λ
=

c

∆ν
,

where N is the number of periods. Hence, our main finding is that the coherence
time is inverse to the spectral width:

tc =
Lc

c
=

1

∆ν
.

In a generalization of the above picture, we can write

tc = bwp · 1

∆ν
,

in which the proportionality factor bwp is called the coherence time-bandwidth prod-
uct. This factor depends on the shape/spectral distribution (width) of the pulse and
is of the order of 1.

b) Definitions of the coherence time:
Next, we want to calculate the coherence time of a Gaussian pulse. For this purpose,
let us consider a Gaussian pulse with some temporal width tp. It can be described by
a (complex) field amplitude

E(t, tp) = E0 · e
−
(
t
tp

)2
−iωt−iϕ(t)
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or by the intensity

I(t, tp) = I0 · e
−2

(
t
tp

)2

.

Note that the temporal width tp is not the pulse duration at FWHM. We will address
the difference later. According to Eq. (A111), the normalized coherence function
then becomes

G(∆t) = 〈E∗(t) · E(t+ ∆t)〉τ = e
− 1

2

(
∆t
tp

)2

.

in the case of ϕ(t) = const. With Eq. (A112), the normalized power spectral density
can be determined via

σ(ν) =

+∞∫
−∞

G(∆t) · ei2πν∆td∆t = e−2π2ν2t2p .

The coherence time of a pulse can now be defined in several ways. All of these defi-
nitions apply different criteria and deliver results with considerably different absolute
values corresponding to the criterion.

1. Mean value of the normalized coherence function1)2)3):

tc =

+∞∫
−∞

|G(∆t)|2 d∆t =
√
π · tp = 1.772 · tp .

2. Second momentum of the square of the normalized coherence function2)3)4):

tc =

√√√√√√√√
+∞∫
−∞

∆t2 · |G(∆t)|2 d∆t

+∞∫
−∞
|G(∆t)|2 d∆t

=
tp√

2
= 0.707 · tp .

3. Second momentum of the absolute value of the normalized coherence function2):

tc =

√√√√√√√√
+∞∫
−∞

∆t2 · |G(∆t)|d∆t

+∞∫
−∞
|G(∆t)|d∆t

= tp .

4. FWHM of the normalized coherence function:

exp

(
−1

2

(
tc

2tp

)2
)

=
1

2

⇒ tc = 2
√

2 ln 2 · tp = 2.354 · tp .

1) Saleh, B.E.A and Teich, M.C. (2007) Fundamentals of Photonics, John Wiley & Sons, Inc.
2) Mandel, L. and Wolf, E. (1995) Optical Coherence and Quantum Optics, Cambridge University Press.
3) Perina, J. (1971) Coherence of Light, Van Nostarnd Reinhold.
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5. FWHM of the squared normalized coherence function4):

exp

(
−
(
tc

2tp

)2
)

=
1

2

⇒ tc = 2
√

ln 2 · tp = 1.662 · tp .

6. First momentum / average of the normalized coherence function5) (notice the be-
gin of the integration interval in comparison to the other definitions):

tc =

+∞∫
0

∆t · |G(∆t)|d∆t

+∞∫
0

|G(∆t)| d∆t

=

√
2

π
· tp = 0.798 · tp .

c) Definitions of the spectral width:
In an analogous way, it is possible to define the spectral width. This is also somewhat
arbitrary and can be formulated in different ways via the power spectral density.

A. 1/e2 threshold of power spectral density:

exp

(
−2π2t2p

(
∆ν

2

)2
)

= e−2

⇒ ∆ν =
2

π
· 1

tp
= 0.637 · 1

tp
.

B. FWHM threshold of power spectral density5):

exp

(
−2π2t2p

(
∆ν

2

)2
)

=
1

2

⇒ ∆ν =

√
2 ln 2

π
· 1

tp
= 0.3748 · 1

tp
.

C. Definition as second momentum2)3):

∆ν =

√√√√√√√√
+∞∫
−∞

ν2 · |σ(ν)|2 dν

+∞∫
−∞
|σ(ν)|2 dν

=
1

2π
√

2tp
=

0.133

tp
.

4) Diels, J.-C. and Rudolph, W. (2006) Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques,
and Applications on a Femtosecond Time Scale, Academic Press, 2nd edn.

5) Weiner, A.M. (2009) Ultrafast Optics, John Wiley & Sons Inc.
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d) The bandwidth product:
Corresponding to the above definitions of the coherence time and spectral width, the
bandwidth product ∆ν tc can take the values listed in Table S7.1. The bandwidth
products for all pulse shapes are obtained by eliminating the arbitrarily chosen tem-
poral width tp from the expressions for the spectral width and the coherence time.
The bandwidth product is thus a characteristic value for each pulse shape. In Table
S7.1, we highlight the most commonly used combination, that is, the FWHM defini-
tion for both coherence time and bandwidth. We will also apply this in the following
considerations of various pulse shapes.

Table S7.1 Various definitions of the coherence time tc and the spectral width ∆ν.

Definition of
spectral width

A B C

Def. of
coher.
time

∆ν = 2
π

1
tp

∆ν =
√
2 ln 2
πtp

∆ν = 1
2π
√
2 tp

1 tc =
√
π tp 2

√
π = 3.545

√
2π ln 2 = 2.087 1

2
√
2π

= 0.199

2 tc = tp/
√

2
√

2/π = 0.450
√

ln 2/π = 0.265 1
4π

= 0.0796

3 tc = tp 2/π = 0.637
√
2 ln 2
π

= 0.375 1
2π
√
2

= 0.113

4 tc = 2
√

2 ln 2 tp
4
√
2 ln 2
π

= 1.499 4 ln 2
π

= 0.883 1
π

√
ln 2 = 0.265

5 tc = 2
√

ln 2 tp
2
√
ln 2
π

= 0.530 2
√
2 ln 2
π

= 0.624 1
π

√
ln 2
2

= 0.187

6 tc =
√

2
π
tp (2/π)

3
2 = 0.508 2

√
ln 2

π
√
π

= 0.299 1
2π
√
π

= 0.0598

We now look at the influence of the pulse shape on the coherence time and the band-
width product. For this purpose, we only use the definitions 4 and B (FWHM), as this
is most commonly used and most convenient. It is also sufficient for the applications
dealt within in the book. In the following, we sketch the calculation of the autocor-
relation function G(∆t) and the spectral density σ(ω) of various functions (Figure
S7.3) as given in Eqs. (A111) and (A109).

1. Gaussian pulse envelope:
The field of a Gaussian pulse (blue curve in Figure S7.3a) is given by

E(t) = E0 exp

(
−2 ln(2)

(
t

∆τFWHM

)2
)

= E0 exp

(
−
(
t

tp

)2
)

(S7.3a)

and its intensity (Figure S7.3b) by

I(t) = I0 exp

(
−4 ln(2)

(
t

∆τFWHM

)2
)

= I0 exp

(
−2

(
t

tp

)2
)

. (S7.3b)
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Figure S7.3 (a) Field plots and (b) intensity plots for various pulse shapes.
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From Eq. (S7.3), we obtain ∆τFWHM =
√

2 ln 2 tp = 1.1774 tp. For the auto-
correlation function6), we then find

G(∆t) =

+∞∫
−∞

E(t)E(t+ ∆t)dt

= E2
0

+∞∫
−∞

exp

[
−2 ln(2)

(
t

∆τFWHM

)2
]

exp

[
−2 ln(2)

(
t+ ∆t

∆τFWHM

)2
]

dt

= E2
0

+∞∫
−∞

exp

[
− 2 ln(2)

∆τ2
FWHM

(
t2 + (t+ ∆t)2

)]
dt

= E2
0 exp

(
− ln(2)

∆τ2
FWHM

∆t2
) +∞∫
−∞

exp

(
− 4 ln(2)

∆τ2
FWHM

(
t+

1

2
∆t
)2
)

dt

=
∆τFWHM

2

√
π

ln(2)
E2

0 exp

(
− ln(2)

∆τ2
FWHM

∆t2
)

= G0 exp

(
− ln(2)

∆τ2
FWHM

∆t2
)

. (S7.4)

The autocorrelation function of a Gaussian function (Figure S7.4a), also called
the temporal coherence function, is still a Gaussian. For a temporal width tc (full
width at half maximum of the autocorrelation; also called the coherence time),
the intensity decreases to half of its maximum value. Accordingly, we have

− ln(2) = − ln(2)

∆τ2
FWHM

(
tc
2

)2

. (S7.5)

This implies that

1

∆τ2
FWHM

=
4

t2c

and that the coherence time and coherence length are given by

tc = 2 ∆τFWHM and
Lc = ctc = 2c∆τFWHM ,

respectively. The spectral density is defined as the Fourier transform of the inten-
sity autocorrelation G(∆t) as has been used in Problem P7.1 and which holds in

6) Please note that we consider the autocorrelation function of the field and not the intensity autocorrela-
tion, which is often confused in literature:

G(∆t) =

∫ +∞

−∞
E(t)E(t+ ∆t)dt versus IAC(∆t) =

∫ +∞

−∞
I(t)I(t+ ∆t)dt .

. For further information, we refer to Appendix 5.
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Figure S7.4 (a) Intensity (red), autocorrelation (green) function and (b) spectral density
(blue) for a Gaussian pulse with ∆τFWHM = 100 fs.

general (Wiener–Khinchin theorem). Hence, it is given by (Figure S7.4b)

σ(ω) =

+∞∫
−∞

G(∆t)e−iω∆td∆t

= G0

+∞∫
−∞

exp

(
−4 ln(2)

t2c
∆t2

)
exp (−iω∆t) d∆t

= G0 exp

(
− t2c

16 ln(2)
ω2

) +∞∫
−∞

exp

[
−4 ln(2)

t2c

(
∆t+

it2c
2 ln(2)

)2
]

d∆t

=

√
π

ln(2)

tc
2
G0 exp

(
− t2c

16 ln(2)
ω2

)
= σmax exp

(
− 1

ln 2

(
∆τFWHM ω

4

)2
)

.
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As before, we have

− ln 2 = − 1

ln 2

(
∆τFWHM ∆ωFWHM

4

)2

which yields a spectral width of

∆ωFWHM =
4 ln 2

∆τFWHM
or

∆νFWHM =
2 ln 2

π

1

∆τFWHM
=

0.4413

∆τFWHM
=

0.8826

tc
=

√
2 ln 2

πtp
=

0.3748

tp
.

For a Gaussian pulse, the bandwidth product becomes

∆νFWHM ∆τFWHM =
1

2
∆νFWHMtc = 0.4413 .

In a similar way, the autocorrelation functions and spectral densities for the other
pulse shapes can be obtained. It should be noted that the spectral densities can
also be calculated (often more conveniently) directly from the Fourier transform
of the temporal profile of the field according to

σ(ω) = Ẽ(ω) · Ẽ(ω)∗ =
∣∣Ẽ(ω)

∣∣2 .

Here, Ẽ(ω) = F [E] (ω/(2π)) is the Fourier transform of E(t) with respect to
ω/(2π). The equivalence of this method is shown in Appendix 4. We will use
one or the other in the following calculations for the spectral densities.

2. Rectangular pulse envelope:
In the following, we provide the results for the rectangular pulse (green curve in
Figure S7.3). Here, the field amplitude reads

E(t) =

{
E0; |t| ≤ ∆τFWHM

2

0; |t| ≥ ∆τFWHM
2

(S7.6a)

and the intensity

I(t) =

{
I0; |t| ≤ ∆τFWHM

2

0; |t| ≥ ∆τFWHM
2

(S7.6b)

The autocorrelation function is generally given by

G(∆t) =

+∞∫
−∞

E(t)E(t+ ∆t)dt .

which then yields (green curve in Figure S7.5a)

G(∆t) = E2
0 ∆τFWHM

{
1−

∣∣∣ ∆t
∆τFWHM

∣∣∣ ; |∆t| ≤ ∆τFWHM

0; elsewhere
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Figure S7.5 (a) Intensity (red), autocorrelation (green) function and (b) spectral density
(blue) for a rectangular pulse with ∆τFWHM = 100 fs.

For the temporal width tc (full width at half maximum coherence time), the auto-
correlation function decreases to half of its maximum, that is,

tc = ∆τFWHM ,

The coherence length is given by

Lc = c tc = c∆τFWHM ,

which is half the value for the Gaussian pulse envelope. Consequently, the spectral
density curve must be much broader. The spectral density is obtained either by
the Fourier transform of the autocorrelation function or, more conveniently, via
the absolute square of the Fourier transform of the field (Appendix 4). Thus, it
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reads (Figure S7.5b)

σ(ω) =

+∞∫
−∞

G(∆t)e−iω∆td∆t =
∣∣Ẽ(ω)

∣∣2
= E2

0 ∆τ2
FWHM sinc2

(
ω∆τFWHM

2π

)
= E2

0 ∆τ2
FWHM sinc2(ν∆τFWHM) ,

in which sinc(x) = sin(πx)/(πx) and ω = 2πν. A more detailed derivation
of the autocorrelation function G(∆t) and spectral density σ(ω) of a rectangular
pulse can be found in Appendix 1.

3. Sech2 pulse envelope:
The field amplitude and the pulse intensity (orange functions in Figure S7.3) are
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Figure S7.6 (a) Intensity, autocorrelation function and (b) spectral density for a sech2
pulse with ∆τFWHM = 100 fs.
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given by

E(t) = E0 sech
(

2 ln(1 +
√

2)t/∆τFWHM

)
=
√
I0 sech

(
1.7627

t

∆τFWHM

)
, (S7.7a)

I(t) = I0 sech2
(

2 ln(1 +
√

2)t/∆τFWHM

)
= I0 sech2

(
1.7627

t

∆τFWHM

)
, (S7.7b)

respectively. The autocorrelation function is then determined by (Figure S7.6;
Appendix 3)

G(∆t) =

+∞∫
−∞

E(t)E(t+ ∆t)dt

= I0

+∞∫
−∞

sech

(
1.7627

t

∆τFWHM

)
sech

(
1.7627

t+ ∆t

∆τFWHM

)
dt

= I0∆t ·

 1

sinh
(

1.7627∆t
∆τFWHM

)
 .

By Fourier transformation and with ω = 2πν, we obtain the spectral density (Fig-
ure S7.6b; Appendix 3)

σ(ω) = I0

(
π∆τFWHM

1.7627

)2

sech2

(
π∆τFWHM ω

2 · 1.7627

)
= I0

(
π∆τFWHM

1.7627

)2

sech2

(
π2 ∆τFWHM ν

1.7627

)
.

4. Lorentzian pulse envelope:
The field of the Lorentzian pulse is given by (red curve in Figure 7.3)

E(t) = E0 ·

(
1 +

4

1 +
√

2

(
t

∆τFWHM

)2
)−1

=
E0

1 +
(

1.2872 t
∆τFWHM

)2
(S7.8a)

and the intensity by

I(t) = I0 ·

(
1 +

4

1 +
√

2

(
t

∆τFWHM

)2
)−2

=
I0(

1 +
(

1.2872 t
∆τFWHM

)2
)2

. (S7.8b)
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Figure S7.7 (a) Intensity, autocorrelation function and (b) spectral density for a Lorentzian
pulse with ∆τFWHM = 100 fs.

The autocorrelation function reads (Figure S7.7a; Appendix 2)

G(∆t) =

+∞∫
−∞

E(t)E(t+ ∆t)dt

=
1

2
· πτ E2

0

1 +
(

∆t
2τ

)2
from which we obtain with τ = ∆τFWHM/1.2872 and via Fourier transformation
the spectral density (Figure S7.7b; Appendix 2)

σ(ω) = (E0πτ)2 e−2τ |ω|

= (E0πτ)2 e−4πτ |ν| .

Finally, in Figure S7.8, a comparison of spectral densities is shown for various pulse
shapes with equal ∆τFWHM = 100 fs. As one can see, different spectral widths
∆ωFWHM are obtained which depend on the pulse shape.
The so-called pulse duration – bandwidth product (see also part b) of this Problem)
is a characteristic of the pulse shape. The values of the pulse duration – bandwidth
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Figure S7.8 Comparison of the spectral density σ(ω) for various pulse shapes each with
∆τFWHM = 100 fs.

product can be derived from Figure S7.8 and yield

∆τFWHM∆ωFWHM

2π
= ∆τFWHM∆νFWHM =


0.441; Gaussian pulse
0.886; Rectangular pulse
0.142; Lorentzian pulse
0.315 = 1/π; Sech2pulse

One can very nicely see the Wiener-Khinchin theorem in Figure S7.8. A relatively
narrow autocorrelation function like for the rectangular pulse leads to a broad spec-
trum. And vice versa a broad correlation function like for the Lorentzian pulse (with
its broad “wings”) leads to a relatively narrow spectrum.
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Appendix to Problem P7.2

In this appendix7), we provide some lengthy derivations and conceptual considera-
tions mentioned in the discussion of Problem P7.2.

Appendix 1:
Derivation of the autocorrelation function and spectral density for a
rectangular pulse shape

At first, let us consider the autocorrelation function. For this purpose, we start from

E(t) = E0 Θ

(
∆τFWHM

2
− |t|

)
(AP.1)

with ∆τFWHM > 0 and the Heaviside function

Θ(x) =

{
1 , for x > 0

0 , for x < 0
(AP.2)

In this case, the autocorrelation function reads

G(∆t) =

∞∫
−∞

E(t)E(t+ ∆t) dt (AP.3)

= E2
0

∞∫
−∞

Θ

(
∆τFWHM

2
− |t|

)
Θ

(
∆τFWHM

2
− |t+ ∆t|

)
dt

= E2
0

∞∫
−∞

Θ

(
∆τFWHM

2
−
∣∣∣∣t− ∆t

2

∣∣∣∣) Θ

(
∆τFWHM

2
−
∣∣∣∣t+

∆t

2

∣∣∣∣) dt

= E2
0

∞∫
−∞

Θ (∆τFWHM − |∆t|) Θ

(
∆τFWHM −∆t

2
− |t|

)
dt . (AP.4)

The product of the two Heaviside functions only becomes zero, if the condition

−∆τFWHM

2
≤ t± ∆t

2
≤ ∆τFWHM

2

is valid. This can be rewritten according to

max

{
−

∆τFWHM −∆t

2
,−

∆τFWHM + ∆t

2

}
≤ t ≤ min

{
∆τFWHM −∆t

2
,

∆τFWHM + ∆t

2

}
.

7) Provided by J.-M. Kaltenbach (Carl Zeiss AG, Oberkochen, Germany).
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This means that the conditions ∆τFWHM ≥ |∆t| and (∆τFWHM + |∆t|)/2 ≥ |t| are
true. Knowing this, we may continue with Eq. (AP.4) as follows:

G(∆t) = E2
0 Θ(∆τFWHM − |∆t|)

∫ ∆τFWHM−∆t

2

−∆τFWHM−∆t

2

dt

= E2
0(∆τFWHM − |∆t|) Θ(∆τFWHM − |∆t|)

= E2
0 ∆τFWHM

(
1−

∣∣∣∣ ∆t

∆τFWHM

∣∣∣∣) Θ

(
1−

∣∣∣∣ ∆t

∆τFWHM

∣∣∣∣)
= E2

0 Λ

(
∆t

∆τFWHM

)
, (AP.5)

where Λ(x) = (1− |x|) Θ(1− |x|) is the so-called triangle function.

Next, we have a look at the spectral density, which reads

σ(ω) =

∞∫
−∞

G(∆t) e−iω∆t d∆t (AP.6)

= E2
0

∞∫
−∞

Λ

(
∆t

∆τFWHM

)
e−iω∆t d∆t

= E2
0

∆τFWHM∫
−∆τFWHM

(∆τFWHM − |∆t|) e−iω∆t d∆t

= 2E2
0

∆τFWHM∫
0

(∆τFWHM −∆t) cos(ω∆t) d∆t

= 2E2
0

∆τFWHM∫
0

(
∆τFWHM cos(ω∆t)− ∂

∂ω
sin(ω∆t)

)
d∆t

= 2E2
0

(
∆τFWHM

ω
sin(ω∆τFWHM)− ∂

∂ω

1− cos(ω∆τFWHM)

ω

)
=

2E2
0

ω2
(1− cos(ω∆τFWHM))

=
4E2

0

ω2
sin

(
ω∆τFWHM

2

)2

= (E0 ∆τFWHM)2

(
sin(ω∆τFWHM/2)

ω∆τFWHM/2

)2

=

(
E0 ∆τFWHM sinc

(
ω∆τFWHM

2π

))2

=

(
E0 ∆τFWHM J

(
ω∆τFWHM

2

))2

(AP.7)
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with sinc(x) = sin(πx)/(πx) and the spherical Bessel function J = sin(x)/x.

Appendix 2:
Derivation of the autocorrelation function and spectral density for a
Lorentzian pulse shape

The Lorentzian pulse shape is generally determined by the function

f(x) =
1

1 + x2
.

The autocorrelation function is again given by Eq. (AP.3) and the spectral density by
Eq. (AP.6), whereas

E(t) = E0 f (t/τ) ≡ E0 fτ (t) . (AP.8)

For the calculation of G(∆t), we would like to follow here a different approach. We
use the convolution theorem and the Fourier transform (see also Info Box A.2 in
Section A.2.4) of E(t). In mathematical standard literature, it can be found that the
Fourier transform of a Lorentzian function f(t) is proportional to exp(−a |ω|). In
the following, we define the Fourier transformation8) as

F{f(t)} =

∞∫
−∞

f(t) e2πiνt dt (AP.9)

and the inverse Fourier transformation as

F−1{f(ν)} =

∞∫
−∞

f(ν) e−2πiνt dν . (AP.10)

Next, we define a function

ga(ν) = e−a|ν|

8) Please note that, in contrast to Chapter A, the definition of the Fourier transform has a factor 2π in the
exponent. This is indeed the simplest choice, as it allows us to decide whether to use 2π or

√
2π as

pre-factors in both transform and inverse transform or not. In addition, this definition simplifies the
convolution theorem. Hence, the Fourier transform and the inverse Fourier transform now only differ in
the sign of the exponent, and Eqs. (AP.9) and (AP.10) are written such that σ(2πν) = F{G}(ν).
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with a > 0 and calculate its inverse Fourier transform, that is,

F−1{ga(ν)} =

∞∫
−∞

e−2πiνt−a|ν| dν

=

∞∫
0

e−(2πiνt+a)ν dν +

∞∫
0

e+(2πiνt−a)ν dν

=
1

2πit+ a
− 1

2πit− a

=
2a

a2 + (2πt)2

=
2/a

1 + (2πt/a)2

=
2

a
f a

2π
(t)

or

F−1{πτg2πτ}(t) = fτ (t) =
1

1 + (t/τ)2
,

F{fτ}(ν) = πτg2πτ (ν) = πτ e−2πτ |ν| = πτ e−τ |ω| . (AP.11)

For the calculation of G, we now substitute t by t − ∆t and use the fact that the
Lorentzian function is an even function. Hence, we have

G(∆t) = E2
0

∞∫
−∞

fτ (t) fτ (t+ ∆t) dt

= E2
0

∞∫
−∞

fτ (t−∆t) fτ (t) dt

= E2
0

∞∫
−∞

fτ (∆t− t) fτ (t) dt

= E2
0(fτ ∗ fτ )(∆t) (AP.12)

= E2
0 F−1{F{fτ} · F{fτ}}(∆t) , (AP.13)

where ∗ denotes the convolution. For the transition from Eq. (AP.12) to Eq. (AP.13),
we used the convolution theorem. From Eq. (AP.11), we derive

(F{fτ}(ν))2 =
πτ

2
F{f2τ}(ν)
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and thus

G(∆t) =
πτ E2

0

2
F−1{F{f2τ}}(∆t)

=
πτ E2

0

2
f2τ (∆t)

=
1

2

πτ E2
0

1 +
(

∆t
2τ

)2 .

As we can see, the autocorrelation of a Lorentzian function is again a Lorentzian. For
the spectral density, we consequently derive from Eqs. (AP.11) and (AP.13)

σ(ω) = (πτ E0)2 e−2τ |ω|

=
(
πτ E0 e−τ |ω|

)2
.

Appendix 3:
Derivation of the autocorrelation function and spectral density for a sech
pulse shape

The field of a sech pulse is given by

E(t) =
√
I0 sech

(
t

τ

)
=
√
I0

1

cosh
(
t
τ

)
with τ = ∆τFWHM/1.7627. The autocorrelation function then becomes

G(∆t) = I0

∞∫
−∞

(
cosh

(
t

τ

)
cosh

(
t+ ∆t

τ

))−1

dt

= I0

∞∫
−∞

(
cosh

(
t−∆t/2

τ

)
cosh

(
t+ ∆t/2

τ

))−1

dt

= 2I0

∞∫
−∞

(
cosh

(
2t

τ

)
+ cosh

(
∆t

τ

))−1

dt

= 4I0

∞∫
0

(
cosh

(
2t

τ

)
+ cosh

(
∆t

τ

))−1

dt . (AP.14)

Here, we have used the theorems of the hyperbolic functions

cosh(x± y) = cosh(x) cosh(y)± sinh(x) sinh(y) , (AP.15)
sinh(x± y) = sinh(x) cosh(y)± cosh(x) sinh(y) , (AP.16)

and in particular

cosh2(x)− sinh2(x) = 1 . (AP.17)
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From Eq. (AP.15), we directly obtain

cosh(x+ y) + cosh(x− y) = 2 cosh(x) cosh(y) ,

1 + cosh(2x) = 2 cosh2(x)

and from Eq. (AP.16)
sinh(2x)

1 + cosh(2x)
=

2 sinh(x) cosh(x)

2 cosh2(x)
= tanh(x) , with (AP.18)

tanh(x) =
ex − e−x

ex + e−x
=

e2x − 1

e2x + 1
= y . (AP.19)

When we solve Eq. (AP.19) for x, it follows that

x = arctanh(y) =
1

2
log

(
1 + y

1− y

)
. (AP.20)

For the integral in Eq. (AP.14), we need to consider the term∫
(p+ q cosh(ax))−1 dx

for p 6= q. Substituting ξ = exp(ax) yields cosh(ax) = (ξ2 + 1)/(2ξ) and dx =

dξ/(aξ). Consequently, we obtain∫
(p+ q cosh(ax))−1 dx

=


2

a
√
q2−p2

arctan

(
q eax+p√
q2−p2

)
, for q2 − p2 > 0

1

a
√
p2−q2

log

(
q eax+p−

√
p2−q2

q eax+p+
√
p2−q2

)
, for p2 − q2 > 0

We now evaluate the case p2 > q2, as it is the only relevant one in this discussion so
that ∫

(p+ q cosh(ax))−1 dx

=
2

a

∫ (
q + 2pξ + qξ2

)−1
dξ

=
2

aq

∫ [(
ξ +

p

q
+

√
p2 − q2

q

)(
ξ +

p

q
−
√
p2 − q2

q

)]−1

dξ

=
1

aq
√
p2 − q2

∫  1

ξ + p
q −
√
p2−q2

q

− 1

ξ + p
q +

√
p2−q2

q

 dξ

=
1

aq
√
p2 − q2

log

 ξ + p
q −
√
p2−q2

q

ξ + p
a +

√
p2−q2

q


=

1

a
√
p2 − q2

log

(
q eax + p−

√
p2 − q2

q eax + p+
√
p2 − q2

)
.
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In our case, we have p = cosh
(

∆t
τ

)
and q = 1. Thus, p > q if ∆t 6= 0 and√

p2 − q2 = sinh
(

∆t
τ

)
. We then obtain with a = 2/τ

G(∆t) =
2I0τ

sinh
(

∆t
τ

) log

(
1 + cosh

(
∆t
τ

)
+ sinh

(
∆t
τ

)
1 + cosh

(
∆t
τ

)
− sinh

(
∆t
τ

))

=
2I0τ

sinh
(

∆t
2τ

) log

1 +
sinh( ∆t

τ )
1+cosh( ∆t

τ )

1− sinh( ∆t
τ )

1+cosh( ∆t
τ )


=

4I0τ

sinh
(

∆t
τ

) 1

2
log

(
1 + tanh

(
∆t
2τ

)
1− tanh

(
∆t
2τ

)) .

In the last step, we used the relation in Eq. (AP.18). Using Eq. (AP.20), we finally
write

G(∆t) =
2I0 ∆t

sinh
(

∆t
τ

)
= 2I0τ

∆t/τ

sinh
(

∆t
τ

)
= 2I0

∆t

sinh
(

∆t
τ

) .

For the calculation of the spectral density, we may use an integral table, as provided
in standard mathematical literature. With the Fourier transform of the field

Ẽ(ω) =

∞∫
−∞

E(t) e−iωt dt

=

∞∫
−∞

√
I0 sech

(
t

τ

)
e−iωt dt

= 2
√
I0

∞∫
0

cos(ωt)

cosh(t/τ)
dt

=
πτ
√
I0

cosh
(
π
2 τω

) ,

we directly obtain the spectral density (see also Appendix 4)

σ(ω) =
(
Ẽ(ω)

)2
= I0

(
πτ

cosh(πτω/2)

)2

.
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Appendix 4:
Alternative calculation of the spectral density σ(ω) directly from the
Fourier transform of the field E(t)

For the sake of simplicity, we write

Ẽ(ω) = F{E}
(
ω

2π

)
and separate the field in an even and an odd component according to

Eeven(t) =
E(t) + E(−t)

2
,

Eodd(t) =
E(t)− E(−t)

2
,

respectively. We then have E = Eeven + Eodd and Ẽ = Ẽeven + Ẽodd, in which
Ẽeven has a real and Ẽodd a purely imaginary value. Hence, it follows that

(Ẽeven(ω))2 =
∣∣Ẽeven(ω)

∣∣2 ,

(Ẽodd(ω))2 = −
∣∣Ẽodd(ω)

∣∣2 ,

or

Ẽeven(ω) = Re(Ẽ(ω)) , (AP.21)
Ẽodd(ω) = i Im(Ẽ(ω)) . (AP.22)

With the symbol ⊗ for the correlation and ∗ for the convolution, we have

G(∆t) = E ⊗ E

=

∞∫
−∞

E(t)E(t+ ∆t) dt

=

∞∫
−∞

E(t−∆t)E(t) dt

=

∞∫
−∞

(Eeven(t−∆t) + Eodd(t−∆t)) (Eeven(t) + Eodd(t)) dt

=

∞∫
−∞

(Eeven(∆t− t)− Eodd(∆t− t)) (Eeven(t) + Eodd(t)) dt

= Eeven ∗ Eeven − Eodd ∗ Eodd + Eeven ∗ Eodd − Eodd ∗ Eeven︸ ︷︷ ︸
=0, as the convolution is commutative

.

Using the convolution theorem as well as Eqs. (AP.21) and (AP.22), we find

F{G} = Ẽ2
even − Ẽ2

odd =
∣∣Ẽeven

∣∣2 +
∣∣Ẽodd

∣∣2
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and finally

σ(ω) =
∣∣Ẽ(ω)

∣∣2 . (AP.23)

In Appendix 1, σ was calculated via the Fourier transform of the autocorrelation
function. An alternative approach is given by Eq. (AP.23). From Eq. (AP.1), we
derive

Ẽ(ω) = E0

∆τFWHM
2∫

−∆τFWHM
2

e−iωt dt

= E0
e−iω∆τFWHM/2 − eiω∆τFWHM/2

−iω

= E0 ∆τFWHM

−2i sin
(
ω∆τFWHM

2

)
−2iω ∆τFWHM

2

= E0 ∆τFWHM sinc

(
ω∆τFWHM

2π

)
,

which leads directly to Eq. (AP.7) by taking the square. The above considerations
are valid for real functions E(t) of any symmetry. Additionally, it can be shown that
Eq. (AP.23) also holds for complex functions.
Let us now consider some further symmetry properties by defining

E(−) ≡ E(−t) .

Then, we have

Ẽ(−)∗(ω) =

∞∫
−∞

E∗(−t) e−iωt dt

=

 ∞∫
−∞

E(−t) e+iωt dt

∗

=

 ∞∫
−∞

E(t) e−iωt dt

∗

= Ẽ∗(ω) .
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By introducing another complex function F , we can further write

(E ⊗ F )(∆t) =

∞∫
−∞

E∗(t)F (t+ ∆t) dt

=

∞∫
−∞

E∗(−t)F (∆t− t) dt

=

∞∫
−∞

E(−)∗(t)F (∆t− t) dt

= (E(−)∗ ∗ F )(∆t) .

With the convolution theorem, it follows that

Ẽ ⊗ F = ˜E(−)∗ ∗ F = ˜E(−)∗ · F = Ẽ∗ · F̃ =
∣∣Ẽ∣∣2

if E = F .

Appendix 5:
Relation between autocorrelation and intensity correlation function

In literature, we often find a confusion between autocorrelation and intensity cor-
relation function. Here, we would like to clarify this issue by using the following
denominations:

GE(∆t) =

∞∫
−∞

E(t)E(t+ ∆t) dt , (AP.24)

GI(∆t) =

∞∫
−∞

I(t)I(t+ ∆t) dt , (AP.25)

with I(t) = |E(t)|2. As an example, we compare the autocorrelation and the intensity
correlation for the sech pulse shape. In Appendix 3, we calculated

GE(∆t) =
2I0 ∆t

sinh(∆t/τ)

for

E(t) =

√
I0

cosh(t/τ)
and τ =

∆τFWHM

1.7627
.

In analogy to the derivation of Eq. (AP.14), we can write

GI(∆t) = 8I2
0

∞∫
0

(
cosh

(
2t

τ

)
+ cosh

(
∆t

τ

))−2

dt .
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The integral
∫

(p+ q cosh(ax))−1 dx is already known from Appendix 3, so we use
a linear combination of

1

(p+ q cosh(ax))2
+

p

q2 − p2

1

p+ q cosh(ax)
,

which can be re-written as

(q2 − p2) + (p2 + pq cosh(ax))

(q2 − p2)(p+ q cosh(ax))2

=
q

q2 − p2

q + p cosh(ax)

(p+ q cosh(ax))2

=
q

q2 − p2

p cosh(ax) + q
(
cosh2(ax)− sinh2(ax)

)
(p+ q cosh(ax))2

=
q

q2 − p2

(p+ q cosh(ax)) cosh(ax) + q sinh2(ax)

(p+ q cosh(ax))2

=
q

a(q2 − p2)

(
a cosh(ax)

p+ q cosh(ax)
− sinh(ax) aq sinh(ax)

(p+ q cosh(ax))2

)
=

q

a(q2 − p2)

d

dx

sinh(ax)

p+ q cosh(ax)

so that

1

(p+ q cosh(ax))2
=

1

q2 − p2

(
q

a

d

dx

sinh(ax)

p+ q cosh(ax)
− p

p+ q cosh(ax)

)
.

with p = cosh(∆t/τ), q = 1, q2 − p2 = − sinh2(∆t/τ), and a = 2/τ . We now
obtain for the intensity correlation

GI(∆t) =
−8I2

0

sinh2(∆t/τ)

(
τ

2

sinh(2t/τ)

p+ q cosh(2t/τ)

∣∣∣∣∞
0

− cosh

(
∆t

τ

)
GE(∆t)

4I0

)
=

4I2
0τ

sinh2(∆t/τ)

(
cosh

(
∆t

τ

)
∆t/τ

sinh(∆t/τ)
− 1

)
=

(
2I0

sinh(∆t/τ)

)2(
∆t/τ

tanh(∆t/τ)
− 1

)
τ .

Since tanh(x) = 1− x3/3 +O(x5) and sinh(x) = x+O(x3), we finally find

lim
∆t→0

GI(∆t) =
4I2

0τ

3
,

GI(∆t) =
3GI(0)

sinh2 (∆t/τ)

(
∆t/τ

tanh(∆t/τ)
− 1

)
.

The significant difference between the autocorrelation (which correlates the fields)
and intensity correlation becomes not only obvious from the pure mathematics, but
also if we plot the corresponding functions.
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Figure S7.9 Time-encoded wave number over time for a center wavelength of 1050 nm of
a swept-source OCT.

P7.3
Swept-source OCT

How would you design a 1050 nm swept-source OCT with variable sweep
rates up to 500 kHz and a tunable range of 100 nm for the various applica-
tions?:
1. High speed/high resolution/small “imaging” depth (e.g., used for retinal

scans)
2. Medium speed/medium resolution/medium “imaging” depth (e.g., used

for scans in the anterior chamber)
3. Low speed/medium resolution/ultra-deep “imaging” depth (e.g., used for

whole-eye scans)
Determine relevant parameters for sweep rate, bandwidth, SNR, measuring
time per axial scan, and so on.

Solution:

The saw-tooth profile of the swept light source (Figure S7.9) is obtained as function
of time t by

k(t) = k0 +
∆k

∆t
t , (S7.9)

where k, k0 = 2π/λ0, ∆k, and ∆t are the instantaneous optical wave number, the
wave number at the central wavelength (λ0), the optical bandwidth in k-space, and
the sweep or A-scan time, respectively. In swept-source OCT (SS-OCT), the acquired
signal ideally has values at “N” evenly spaced wave numbersK = {k1, ..., kN} with
spacing δk = ∆k/N . The maximum A-scan depth zmax is given by the spectral
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resolution of the “spectrometer”, that is, the number of channels per sweep range ∆k

and can be derived from the Fourier transformation theory via

zmax =
π

2nsδk

=
π

2

N

ns∆k

=
πN

2ns∆t σSS−OCT

=
πfs

2ns σSS−OCT

where σSS−OCT = ∆k/∆t, ns, and fs = N/∆t are the sweep rate, the average
refractive index of the sample, and the analog-to-digital sampling frequency of the
photodetector, respectively. These relations show that the wave number range, the
sampling rate, and the sweep rate all affect the depth range zmax. It should be noted
that the “back-sweep” is often not much shorter than the “forward-sweep”, but cannot
be used for acquisition. In this case, the A-scan time is double the sweep rate.
Typically, one does not design a source but selects one for a given task and designs
the appropriate acquisition system. As a consequence, we discuss a selection of three
typical example sources with (each with a tunable range of 100 nm)

a) 1/∆t = 200 kHz; fs = 100 MHz,
b) 1/∆t = 100 kHz; fs = 250 MHz,
c) 1/∆t = 50 kHz; fs = 500 MHz,

where 1/∆t denotes the scan rate and fs the sampling frequency. The appropriate
SS-OCT source and the acquisition parameters for the various envisioned application
ranges can now be easily selected9). Note that if one chooses the sweep and the
sampling rates freely and keeps the sweep range ∆k fixed, the number of channels
(because of N = ∆k fs/σSS−OCT) and thus the signal-to-noise ratio (SNR) as well
as the resolution vary. For the three applications to be considered, we thus conclude:

1. High resolution/high speed:
Source A: sampling rate of fs = 100MHz, scan rate of 1/∆t = 200 kHz for an
imaging range of zmax = 1mm.

• Large wave number range, that is, ∆k is maximum or ∆λ is maximum, and the
A-scan time (∆t) is minimal.

• Bandwidth needs to be high as well as the analog-digital (A/D) sampling fre-
quency (fs).

• A-scan depth is small.

2. Medium speed/low resolution/medium “imaging” depth:
Source B: sampling rate of fs = 250MHz, scan rate of 1/∆t = 100 kHz for an
imaging range of zmax = 5.1mm.

9) In all cases, we assume a refractive index of ns = 1.35
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3. Low speed/medium resolution/“ultra-deep imaging” depth:
Source C: sampling rate of fs = 500MHz, scan rate of 1/∆t = 50 kHz for an
imaging range of zmax = 20mm. Such a light source can be used to scan the
entire eye.
• Longest scan time ∆t.
• A-scan depth is maximal.

For illustration, we determined the numerical values for the three cases above in Table
S7.2.

Table S7.2 Numerical values for the three sample applications discussed in Problem 7.3.
For all cases, we assumed an average refractive index of the sample of ns = 1.35, a
central frequency of λ0 = 1050 nm, a bandwidth of ∆λ = 100 nm, λmin = 1000 nm,

λmax = 1100 nm, k0 = 0.00598399/nm, kmax = 0.00628319/nm,
kmin = 0.00571199/nm, and ∆k = 0.0005712/nm.

Parameter Application 1 Application 2 Application 3

Sampling rate fs (1/s) 1× 108 2.5× 108 5× 108

Scan rate 1/∆t (1/s) 2× 105 1× 105 5× 104

Scan time ∆t (ms) 5× 10−3 1× 10−2 2× 10−2

Sweep rate σSS−OCT (1/(nm s)) 114 57.1 28.6

Number of channels 500 2, 500 10, 000

Scan depth zmax (mm) 1.0 5.1 20.4

P7.4
Group velocity delay

Calculate the group velocity delay in a Michelson interferometer for various
broadband light sources:
1. SLD with λ0 =850 nm and 50 nm bandwidth
2. Titanium–sapphire laser with λ0 =800 nm and 70 nm bandwidth
3. SLD with λ0 =1050 nm and 100 nm bandwidth
Assume the anterior chamber of the human eye to be the object (sample).
Use as material the data from the Gullstrand Eye (Section 2.2.1) and treat
the chamber as one slab.

Solution:

For the calculation, we use the slab thickness of the anterior chamber from Table
2.1 of 3.1 mm = 3100 µm. For the refractive index, we assume the values for water
as obtained from the measurement data for the optical dispersion of water10). The

10)Masahiko, D. and Masumura, A. (2007) Measurement of the refractive index of distilled water from the
near-infrared region to the ultraviolet region. Appl. Opt., 46, 3811–3820.
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Table S7.3 Light source parameters resulting from calculations discussed in Problem 7.4.

Case 1: SLD Case 2: Ti-Sapphire Case 3: SLD

λ (µm) 0.850 0.800 1.050

∆λ (nm) 50 70 100

dn/dλ (1/µm) −0.008367 −0.010081 −0.004386

∆tg (fs) 2765 2768 2757

∆ω (1/fs) 0.055 0.087 0.072

∆zOCT (µm) 6.38 4.03 4.86

parameters to be inserted to the Sellmeier equation (6.81)

n(λ) =

√√√√1 +

3∑
j=1

Bj · λ2

λ2 − Cj

are at temperature of 20°C given byB1 = 0.5684027565,B2 = 0.1726177391,B3 =

2.086189578 × 10−2, C1 = 5.101829712 × 10−3, C2 = 1.821153936 × 10−2, and
C3 = 2.620722293×10−2. The values for the derivatives dn/dλ can be obtained by
calculating the model curve of refractive index n(λ) and numerically differentiating
it on a sufficiently dense λ-grid. Here, λ must be inserted in micrometers.
We now calculate the round-trip group delay in femtoseconds (fs) via Eq. (7.32)
which follows as

∆tg =
2 ·∆z
c

(
n− λ · dn

dλ

)
=

2 ·∆z
c

1

cg
, (S7.10)

the bandwidth ∆ω via Eq. (7.36) in 1/fs, and the OCT resolution ∆zOCT in µm via
Eq. (7.40). The corresponding results are listed in Table S7.3. Although the round-
trip group delay is very similar in all cases, the different bandwidths lead to quite
deviating OCT resolutions.
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P7.5
Theory of TD-OCT

Derive in detail Eqs. (7.34) and (7.37) from Eq. (7.28). Why is the resolution
in TD-OCT half the coherence length and not the coherence length itself
(Figure 7.6)?

Solution:

a) Derivation of Eq. (7.34):
We start from Eq. (7.28) in Section 7.4.1 which reads

ITD(∆ξ) = RS Re

 +∞∫
−∞

S(ω)e−i∆ξ(ω) dω

 (7.28)

and want to derive in detail

ITD(∆z) = RS cos(ω0∆tp)

+∞∫
−∞

S(ω)e−i(ω−ω0)∆tg dω . (7.34)

For this purpose, we use from Eq. (7.32)

∆ξ = ω0∆tp + (ω − ω0)∆tg (7.32)

in which

∆tp =
2∆z

cp
and ∆tg =

2∆z

cg(ω0)
.

Therefore, we have

ITD(∆z) =RS Re

 +∞∫
−∞

S(ω) e−iω0∆tp−i(ω−ω0)∆tg dω


=RS Re

e−iω0∆tp

+∞∫
−∞

S(ω) e−i(ω−ω0)∆tg dω


=RS Re

e−iω0∆tp

+∞∫
−∞

S(ω) [cos ((ω − ω0)∆tg) + i sin ((ω − ω0)∆tg)] dω


=RS Re

e−iω0∆tp

+∞∫
−∞

S(ω) cos ((ω − ω0)∆tg) dω


+RS Re

i e−iω0∆tp

+∞∫
−∞

S(ω) sin ((ω − ω0)∆tg) dω

 .
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The spectrum S(ω) is a positive quantity and, hence, the second integrand is an
odd function so that

+∞∫
−∞

S(ω) sin ((ω − ω0)∆tg) dω = 0 .

The interference term therefore reduces to

ITD(∆z) =RS Re

e−iω0∆tp

+∞∫
−∞

S(ω) cos ((ω − ω0)∆tg) dω


=RS cos(ω0∆tp)

+∞∫
−∞

S(ω) cos ((ω − ω0)∆tg) dω

·

 +∞∫
−∞

S(ω) cos ((ω − ω0)∆tg) dω + i

+∞∫
−∞

S(ω) sin ((ω − ω0)∆tg) dω


which finally leads to

ITD(∆z) = RS cos(ω0∆tp)

+∞∫
−∞

S(ω)e−i(ω−ω0)∆tg dω . (S7.11)

b) Derivation of Eq. (7.37):
We assume a light source with a Gaussian spectral distribution given by

S(ω) = S0 e
− 1

2

(
ω−ω0

∆ωFWHM

)2

.

The interference term then reads

ITD(∆z) = RS cos(ω0∆tp)

+∞∫
−∞

S0 e
− 1

2

(
ω−ω0

∆ωFWHM

)2

e−i(ω−ω0)∆tg dω

= RS cos(ω0∆tp)

+∞∫
−∞

S0 e
− 1

2

(
ω−ω0

∆ωFWHM

)2
−i(ω−ω0)∆tg dω

= RS cos(ω0∆tp)

+∞∫
−∞

S0 e
− 1

2

(
χ

∆ωFWHM

)2
−iχ∆tg dχ

with χ = ω − ω0. As derived in the Problem P7.1, the final interference signal is

ITD(∆z) = 4
√
π∆ωFWHM S0RS cos(ω0∆tp) exp

(
−

∆ω2
FWHM ∆t2g

2

)
.

(S7.12)



34 Solutions to Problems – Optical Devices in Ophthalmology and Optometry

Consequently, in Michelson interferometry, the optical path difference between
the two is OPD = 2 ∆z due to the round-trip distance traveled by the wave. The
axial resolution is then given by ∆z = 1

2 OPD. On the other hand, we have

∆tg =
2∆z

cg
= tc =

Lc

cg

from which we conclude that ∆z = Lc/2.

P7.6
Theory of FD-OCT

Derive in detail Eq. (7.49) from Eq. (7.47).

Solution:

We start from Eq. (7.47) which is given by

IFD =S(k)R2
R + S(k)RR

+∞∫
−∞

R̂S(zS) e2ik(nSzS) dzS

︸ ︷︷ ︸
cross-correlation term

+
1

4
S(k)

∣∣∣∣∣∣
+∞∫
−∞

R̂S(zS e2ik(nSzS) dzS

∣∣∣∣∣∣
2

. (7.47)

At first, we normalize the coordinates according to

zS =
ẑS

2nS
,

ẑS = 2nSzS,

dzS =
dẑS
2nS

and only consider the evolution of the cross-correlation term.

IFD,cc(k) = S(k)RR

+∞∫
−∞

R̂S(zS) eikzS2nS dzS

= S(k)RR

+∞∫
−∞

R̂S

(
ẑS

2nS

)
eikẑS

dẑS
2nS

=
S(k)RR

2nS

+∞∫
−∞

R̂S

(
ẑS

2nS

)
eikẑS dẑS . (S7.13)
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By using the Fourier transform (A104), we obtain

Fk{R̂S(ẑS)} =

+∞∫
−∞

R̂S(ẑS) eikẑS dẑS .

Finally, the cross-correlation term in Eq. (S7.13) can be written as

IFD,cc(k) =
S(k)RR

2nS
· Fk

{
R̂S

(
ẑS

2nS

)}
=
RR

2nS
· S(k) · Fk

{
R̂S

(
ẑS

2nS

)}
. (S7.14)

The inverse Fourier transform (defined in Eq. (A105)) of a product of two functions
of k is the convolution of the inverse of each of the functions (inverse convolution
theorem). Hence, we derive

F−1
k

{
IFD,cc(k)

}
=
RR

2nS
· F−1

k

{
S(k) · Fk

{
R̂S

(
ẑS

2nS

)}}
=
RR

2nS
· F−1

k {S(k)} ⊗ F−1
k

{
Fk
{
R̂S

(
ẑS

2nS

)}}
=
RR

2nS
· F−1

k {S(k)} ⊗
{
R̂S

(
ẑS

2nS

)}
. (S7.15)
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refractive index nj:

�eld re�ectance Rj:

distance d [mm]:

position l [mm]:

cornea chamber lens vitreous

1 1.3691 1.3297 1.410 1.3284

0.1558 0.0146 0.0293 0.0298

0.5 3.1 3.6

1 1.5 4.6 8.2

Figure S7.10 Geometry of a simplified eye model for the anterior segment.

P7.7
Theory of FD-OCT

1. Use a mathematical software tool (e.g., MATLAB or MathCad) to sim-
ulate an FD-OCT spectrum resulting from the reflections of the 4 major
interfaces of the anterior segment of the eye (assumed to be δ functions in
space). Assume aGaussian pulse of spectral bandwidth for various broad-
band light sources, for example, SLD with λ0 = 1300 nm and 200 nm
bandwidth, titanium:sapphire laser with λ0 = 800 nm and 70 nm band-
width, and/or SLD with λ0 =1050 nm and 100 nm bandwidth. What can
you say about the required resolution of the spectrometer and the dynamic
range?

2. Overlay on the simulated spectra a simulated white noise spectrum. Then,
Fourier transform the simulated results to obtain an A-scan of the anterior
eye segment. What do you observe?

Solution:11)

1. The relevant geometry of the anterior segment of the eye is shown in Figure S7.10.
The reflectances at the interfaces are calculated according to the Fresnel equation
(A4) which reads in general

Rj =

∣∣∣∣∣nj − n′jnj + n′j

∣∣∣∣∣ ,

where j denotes the position of the reflective layer. Note that, contrary to Eq. (A4),
we have to take here the square root of the reflectance, since we work with field

11) Support by Rudolf von Buenau (Carl Zeiss Meditec AG, Jena, Germany) greatly acknowledged.
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Table S7.3 Optical parameters of a simplified eye model for the anterior segment.

n∞ K (µm) λ0 (nm) λ (nm) nj Rj

Cornea 1.3610 7.4147 130.0 1300 1.3673 0.1552
Anterior chamber 1.3221 7.0096 130.0 1300 1.3281 0.0146
Lens 1.3999 9.2492 130.0 1300 1.4078 0.0291
Vitreous 1.3208 6.9806 130.0 1300 1.3268 0.0296

Cornea 1050 1.3691 0.1558
Anterior chamber 1050 1.3297 0.0146
Lens 1050 1.4100 0.0293
Vitreous 1050 1.3284 0.0298

Cornea 800 1.3721 0.1569
Anterior chamber 800 1.3326 0.0146
Lens 800 1.4137 0.0295
Vitreous 800 1.3312 0.0301

amplitudes in the following formulas. Furthermore, we have to take into account
that, for the various wavelengths of 1300 nm, 1050 nm, and 800 nm, the refractive
indices and thus the reflectances are quite different. As an approximation, we
therefore use the so-called Cornu dispersion equation given by

n(λ) = n∞ +
K

λ− λ0
. (S7.16)

The parameters for the simplified eye model can be found in Atchinson et al.12)
and are presented in Table S7.3. As we can see, the variation of the refractive in-
dex with the wavelength is relatively small, as are the differences in reflectances.
However, in an exact calculation, these differences would have to be taken into
account. For our purposes, we use the values for 1050 nm in the following con-
siderations. For a Gaussian pulse, the spectrum in k representation can be given
by

S(k) = S0 · exp

(
−4 ln(2) ·

(
k − k0

∆k

)2
)

.

For λ0 = 1050 nm, there follows a mean wave number of

k0 =
2π

λ0
= 5984/mm .

12) Atchinson, D.A. and Smith, G. (2006) Optics of the Human Eye, Butterworth–Heinemann.
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With a bandwidth of ∆λ = 100 nm (for other sources use corresponding values),
this leads to

∆k =
2π

λ2
0

∆λ = 569.9/mm .

The FD-OCT signal is calculated in accordance with Eq. (7.45) via

I(k) =S(k)R2
R + 2S(k)RR

+∞∫
−∞

RS(zS) cos (2k (nSzS − zR)) dzS

+ S(k)

∣∣∣∣∣∣
+∞∫
−∞

RS(zS) e2ik·nSzS dzS

∣∣∣∣∣∣
2

. (S7.17)

In the derivation of Eq. (7.45), we disregarded dispersion and strong refractive in-
dex changes (compare assumption in Eq. (7.43)). Hence, in our case, Eq. (S7.17)
would only be approximately correct, as in our sample the refractive index strongly
varies (e.g., the index jump at the corneal surface). As a consequence, the expo-
nent must be changed to correctly display the optical path length in the sample
arm. This means that the terms exp(2ik nSzS) and cos[2k (nSzS − zR)] become

exp

2ik

zS∫
0

nS(z′) dz′

 and

cos

2k

 zS∫
0

nS(z′) dz′ − zR

 ,

respectively. For our simplified anterior segment eye model, we assume the OCT
“reflection” (backscattering) planes to be approximated by Dirac delta functions
at positions zSj so that we have

RS(zS) =

4∑
j=1

RSj δ(zS − zSj) . (S7.18)

Here, the index j counts the interfaces and the corresponding positions zSj . The
optical path integral now becomes a sum of nSjzSj over the homogeneous layers
for the 4-layer sample, that is,

I(k) =S(k)R2
R + 2S(k)RR

∞∫
−∞

RS(zS) cos (2k (z̃S − zR)) dzS

+ S(k)

∣∣∣∣∣∣
∞∫
−∞

RS(zS) e2ikz̃S dzS

∣∣∣∣∣∣
2

, (S7.19)
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where

z̃S =

zS∫
0

nS(z′) dz′

is the optical path length in the signal arm. With Eq. (S7.18), we obtain from Eq.
(S7.19)

I(k) =S(k)R2
R + 2S(k)RR

4∑
j=1

RSj

∞∫
−∞

δ(zS − zSj) cos (2k(z̃S − zR)) dzS

+ S(k)

∣∣∣∣∣∣
4∑
j=1

RSj

∞∫
−∞

δ(zS − zSj) e2ikz̃S dzS

∣∣∣∣∣∣
2

= S(k)R2
R + 2S(k)RR

4∑
j=1

RSj cos
(
2k(z̃Sj − zR)

)
+ S(k)

∣∣∣∣∣∣
4∑
j=1

RSj e2ikz̃Sj

∣∣∣∣∣∣
2

where

z̃Sj =

zS∫
0

nS(zS) dzS =

j∑
m=1

nm(zSm − zS(m−1))

is the optical path length for the various layers. If RR = 1 and zR = 0 are
assumed, it follows that

I(k) =S(k)

1 + 2

4∑
j=1

RSj cos(2kz̃Sj) +

∣∣∣∣∣∣
4∑
j=1

RSj e2ikz̃Sj

∣∣∣∣∣∣
2


=S(k)

1 + 2

4∑
j=1

RSj cos

(
2k

j∑
m=1

nm(zSm − zS(m−1))

)

+

∣∣∣∣∣∣
4∑
j=1

RSj exp

(
2ik

j∑
m=1

nm(zSm − zS(m−1))

)∣∣∣∣∣∣
2
 . (S7.20)

Equation (S7.20) is easily programmable in MATLAB, as shown in the following
script. Like in the derivation of Eq. (S7.20), the reflectance of the reference arm
has been set to RR = 1 and its length to zR = 0. A finite value of zR only leads
to a phase shift of the oscillations.

% de f i n e l i g h t s ou r ce c e n t e r wave l e ng t h (mm) and
bandw i d t h (mm)

wl0 = 1050e -6; Dwl = 100e -6;
% c a l c u l a t e c e n t e r wave number ( 1 /mm) and bandw i d t h i n k

−space ( 1 /mm)
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k0 = 2* pi / wl0 ;
Dk = 2* pi * Dwl /( wl0 ^2) ;
% de f i n e k−g r i d w i t h 20 ,001 p o i n t s o ve r a k− i n t e r v a l o f

+/− 1000 /mm
Nk = 20001;
kmax = Dk;
k = k0 +( - kmax : kmax /(( Nk -1) /2) : kmax );
komark =0:0.01:2;
% de f i n e sample i n t e r f a c e d i s t a n c e s , r e f r a c t i v e i n d i c e s ,

r e f l e c t a n c e s
zs = [1 1.5 4.6 8.2];
ns = [1 1.3691 1.3297 1.41006];
Rs = [0.1558 0.0146 0.0293 0.0298];
% c a l c u l a t e o p t i c a l pa t h l e n g t h t o each sample i n t e r f a c e
opl = ns .* diff ([0 zs ]);
for m = 1:4; zz(m) = sum ( opl (1: m)); end
% c a l c u l a t e s p e c t r a l d e n s i t y f u n c t i o n o f t h e l i g h t

s ou r ce
S = exp ( -4* log (2) *((k-k0)/Dk) .^2) ;
% c a l c u l a t e s i m u l a t e d s p e c t r ome t e r s i g n a l
I1 = S .*( ones ( size (k ’)) +2* cos (2*k ’* zz)*Rs ’+ abs ( exp (2* i*k

’* zz)*Rs ’) .^2) ’;
% c a l c u l a t e enve l ope o f t h e s p e c t r ome t e r s i g n a l
Imax = S *(1+2* sum (Rs)+ sum (Rs) ^2) ;
Imin = S *(1 -2* sum (Rs)+ sum (Rs .*[1 -1 -1 -1]) ^2) ;
% p l o t F i g u r e
figure ();
plot (k,I1 , k,Imax , ’ g ’ ,k,Imin , ’ g ’ ,k,S, ’ r ’ ,k0 , komark , ’ r ’ );
ylim ([0 1.6]) ;
grid on;
title ( ’ S i m u l a t e d FD−OCT s p e c t r o m e t e r s i g n a l ’ )
xlabel ( ’ wavenumber ( 1 /mm) ’ )

Figure S7.11 shows the calculated spectrum in the k-range of 4000/mm to
5800/mm. For a better illustration, a green envelope is plotted in the diagram.
The envelope of all three terms of Eq. (S7.20) is determined by

I(k)± = S(k)

1± 2

4∑
j=1

RSj +R2
Sj +

RSj ±
4∑
j=2

RSj

2
 .

Whenwe consider the second term of Eq. (S7.20) for the available numeric values,
it becomes obvious that the term produces oscillations with k-periods of

kj =
π

njzj
= 3.14/mm, 1.52/mm, 0.51/mm, 0.27/mm .

Due to the different reflectances, the amplitudes of these oscillations are different.
Zooming into the above signal (Figures S7.12 and S7.13) can be done via

figure ();
plot (k,I1 , k,Imax , ’ g ’ ,k,Imin , ’ g ’ ,k,S, ’ r ’ ,k0 , komark , ’ r ’ );
ylim ([0 1.6]) ;
xlim ([k0 -0.001* k0 k0 +0.001* k0 ]);
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Figure S7.11 Simulated FD-OCT spectrometer signal.

grid on;
title ( ’ H i g h r e s o l u t i o n s i m u l a t e d FD−OCT s p e c t r o m e t e r

s i g n a l ’ )
xlabel ( ’ wavenumber ( 1 /mm) ’ )
figure ();
plot (k,I1 , k,Imax , ’ g ’ ,k,Imin , ’ g ’ ,k,S, ’ r ’ ,k0 , komark , ’ r ’ );
ylim ([0 1.6]) ;
xlim ([k0 -0.01* k0 k0 +0.01* k0 ]);
grid on;
title ( ’ Zoom i n t o s i m u l a t e d FD−OCT s p e c t r o m e t e r s i g n a l ’ )
xlabel ( ’ wave number ( 1 /mm) ’ )

In Figure S7.12, at least two periods belonging to the first and last system surfaces
are evident. The large period with the large amplitude belongs to the front surface
of the cornea. The third term in the signal term of Eq. (S7.20) describes the
auto-interference of the surfaces. As RSj � RR and reflectance RSj is squared,
these signal contributions are relatively small. The superposition of signals at
system surfaces 2 to 4 is shown here only as a disturbance of the oscillation of the
dominant reflection at the front of the cornea.
According to the sampling theorem, the signal detector in the spectrometer must
have a resolution of

∆k =
k4

2
= 0.13/mm or

∆λ =
λ2

0

2π
·∆k = 0.035 nm .
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Figure S7.12 Zoom-in into spectrum within a k-range of 5978/mm to 5990/mm.

Figure S7.13 Spectrum within a k-range of 5920/mm to 6040/mm.
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Figure S7.14 Simulated spectrometer signal of the interference cross-term overlaid with
white noise.

Figure S7.15 Cross-term normalized by the source spectrum.
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If, in accordance with Figure S7.11, the entire signal (k-range of ≈ 1500/mm) is
to be sampled, the pixel number of the spectrometer is approximately 1500/0.13 =

11500, which can normally not be realized with CCDs. Therefore, only a partial
area (and thus z-distance) will be recorded. With regard to the amplitude dynam-
ics, the measurement conditions are rather relaxed. With a 12-bit camera and
4096 levels, there are 33 levels available to sample the smallest signal amplitude
of 0.0147.

2. To overlay the noise, we first simulate the measured spectrometer signal with and
without a 180° phase shift between the reference and the sample arm. After adding
Gaussian white noise to each, we take the difference in order to obtain the cross-
term and normalize it by the spectral density function of the source. The following
MATLAB code performs a corresponding simulation (Figures S7.14 and S7.15):

% c a l c u l a t e s i m u l a t e d s p e c t r ome t e r s i g n a l w i t h and
w i t h o u t 180 Â° phase s h i f t

I1 = S .*( ones ( size (k ’)) +2* cos (2*k ’* zz)*Rs ’+ abs ( exp (2* i*k
’* zz)*Rs ’) .^2) ’;

I2 = S .*( ones ( size (k ’)) -2* cos (2*k ’* zz)*Rs ’+ abs ( exp (2* i*k
’* zz)*Rs ’) .^2) ’;

% add wh i t e n o i s e t o bo t h s p e c t r ome t e r s i g n a l s
I1n = imnoise (I1 /2 , ’ g a u s s i a n ’ ,0,1e -3) ;
I2n = imnoise (I2 /2 , ’ g a u s s i a n ’ ,0,1e -3) ;
% e x t r a c t i n t e n s i t y c ross−te rm , no rma l i z e , and t a k e

F o u r i e r t r a n s f o rm
I = (I1n - I2n );
%p l o t F i g u r e
figure ();
plot (k,I);
title ( ’ S i m u l a t e d s p e c t r o m e t e r s i g n a l o f i n t e r f e r e n c e

c r o s s − t e rm o v e r l a i d w i t h w h i t e n o i s e ’ )
xlabel ( ’ wave number ( 1 /mm) ’ )
xlim ([k0 -0.1* k0 k0 +0.1* k0 ]);
In = I./S;
figure ();
plot (k,In);
title ( ’ C ross− t e rm s i g n a l n o r m a l i z e d by s o u r c e s p e c t r um ’ )
xlabel ( ’ wave number ( 1 /mm) ’ )
xlim ([k0 -0.1* k0 k0 +0.1* k0 ]);

Note that noise dominates at the upper and lower ends of the normalized spec-
trometer signal. Finally, Figure S7.16 shows the resulting A-scan which clearly
exhibits the four peaks from the front and back surfaces of the cornea and the front
and back surfaces of the lens.
The corneal and lens thicknesses and the anterior chamber appear “stretched” by
the refractive index of each layer, as the optical path length and not the biometric
path length is obtained from the OCT measurement. We can assume an average
index of the eye components between cornea and vitreous of nav = 1.36 and ob-
tain by this calibration the approximate biometric A-scan. In Figure S7.17, the red
curves show the optical path length plot as directly obtained from the Fast Fourier
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Figure S7.16 A-Scan along the optical path length of the anterior segment of the eye.

Transform (FFT) of the spectrum and the green curve (for clarity shifted in the
y-direction) an approximate “biometric” scan.

P7.8
Theory of SS-OCT

Let us consider an SS-OCT with 1050 nm center wavelength and a sawtooth-
like sweep.
1. Simulate the detector signal for a typical sweep rate of 200 kHz and var-

ious arm length mismatches (100 µm, 1mm, 10mm).
2. How does the result changes when the direction of the sweep is reversed?

How, if the sweep rate is reduced to 50 kHz?
3. Use a mathematical software tool (e.g., MATLAB or MathCad) to sim-

ulate the SS-OCT spectrum resulting from the reflections of the 4 ma-
jor interfaces of the anterior eye segment (assumed to be δ functions in
space). Use 1050 nm as a center wavelength and a sawtooth-like sweep
with 200 kHz. Then, Fourier transform the simulated results to obtain an
A-scan of the anterior segment of the eye.

Compare with the results of Problem P7.7.
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Figure S7.17 Comparison of the (a) optical and (b) the “approximate” biometric path
length, for which we assumed an average refractive index of 1.36.
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Solution:13)

1. For comparability with Problem P7.7, we assume the swept-source tuning spec-
trum to have a Gaussian shape with a source bandwidth of ∆λs = 100 nm and a
wavelength tuning range of ∆λt = 200 nm. In practice, this spectral “envelope”
can also have a rectangular or some other shape, depending on the type of swept
laser design. The resulting range of wave numbers is then ∆kt ≈ 2π∆λt/λ

2
0 =

1140/mm, that is, the sweep goes from kmin = k0 − ∆kt/2 = 5414/mm to
kmax = k0 + ∆kt/2 = 6554/mm with k0 = 5984/mm.
For an anterior scan of the eye, the maximum path length difference will be in
the order of ∆z̃ = 2n∆z ≈ 2 · 1.35 · 10mm ≈ 27mm. The required minimum
number of sample points per sweep is thus Nmin = 2/π∆z̃∆k = 19.595. If we
choose N = 20, 000 samples, the step size in k-space becomes δk = ∆k/N =

0.057/mm. At 200 kHz sweep rate, we have κ = ∆k/∆t = 1140mm−1/5 µs =

2.28× 108/mm s.
The following MATLAB code simulates the correpsonding k-sweep:

% de f i n e t ime (ms ) and wave number ( 1 /mm) axes f o r k−
sweep

Nk = 20000;
kmin = 5414; kmax = 6554; k0 = 5984;
Dk = kmax - kmin ;
dk = Dk/Nk;
k = kmin :dk: kmax ;
tmax = 0.025; dt = 0.005/ Nk; tt = 0: dt: tmax ;
% c a l c u l a t e saw− t o o t h k−sweep
kd = dk/dt; kk = kmin + mod (kd*tt ,Dk);
% p l o t saw− t o o t h k−sweep
figure ();
plot (tt *1000 , kk , ’ b l u e ’ );
grid ;
xlabel ( ’ t i m e ( m i c r o s e c o n d s ) ’ );
ylabel ( ’ wave number ( 1 /mm) ’ );
title ( ’ S aw t o o t h k−sweep ’ )

The sawtooth wave number output is shown over 5 consecutive sweeps in Figure
1. The source spectrum is generated by the following MATLAB code and shown
in Figure 2.

% de f i n e swept sou r ce t u n i n g spec t r um
l0 = 1050; Dl = 100;
Dks = 2* pi*Dl /( l0) ^2*1 e6;
S = exp ( -4* log (2) .*((k-k0)/ Dks ) .^2) ;
% p l o t swep t sou r ce t u n i n g spec t r um
figure ();
plot (k,S, ’ b l u e ’ );
xlabel ( ’ wave number ( 1 /mm) ’ );
ylabel ( ’ s p e c t r a l d e n s i t y ’ );
title ( ’ Swept−s o u r c e t u n i n g s p e c t r um ’ );

13) Support by Rudolf von Buenau (Carl Zeiss Meditec AG, Jena, Germany) greatly acknowledged.
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Figure S7.18 Sawtooth k-sweep of a swept-source OCT

Figure S7.19 Swept-source OCT tuning spectrum
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In order to derive the interference signal in a SS-OCT Michelson interferometer,
we need to understand that the emitted signal at the source is “chirped”. According
to Figure 1, it thus has a frequency and a wave number which varies in time like

ωi(t) = ω0 + κct = κc(t− t0) ,

ki(t) = k0 + κt = κ(t− t0) .

To simplify the calculation, we choose k0 and ω0 to be zero at time t0 = 0. We
then have k(t) = κt and ωi(t) = κct. The phase of the signal originating at z = 0

at time t is then given by

ψ(0, t) ∝ eϕ(t)

with

ϕ(t) =

t∫
0

ωi(t
′) dt′ =

t∫
0

κct′ dt′ = κc
t2

2
.

However, if we measure the signal with a detector located at some path distance
z̃ from the source, the amplitude of the signal ψ(z̃, t) is equal to ψ(0, t− z̃/c), as
this point on the wave train left the source at time t− z̃/c. It thus follows that

ψ(z̃, t) ∝ eϕ(z̃,t) = ei(κ/(2c))(z̃−ct)
2

. (S7.21)

In analogy to Eqs. (7.41) and (7.42) of Chapter 7, we can re-write the wavefunc-
tions of Eq. (S7.21) for the reference arm wave with total optical path length
2nRzR and the sample arm wave with total optical path length 2nSzS, which are
assumed to interfere at a chosen time t at the detector via

ψR(t) = ψR,0(kR)RR e−i
κ
2c (2nRzR−ct)2

ψS(t) = ψS,0(kS)

∞∫
−∞

RS(zS) e−i
κ
2c (2nSzS−ct)2

dzS ,

whereRR andRS(zS) are the reflection coefficients in the reference arm and sam-
ple arm, respectively. Note that the instantaneous angular frequencies ωR(t) and
ωS(t) of the reference and sample arm waves at time t are not equal. Both waves
traveled different distances and left the source at different times. This leads to the
“beating” phenomenon discussed in Section 7.3.5. In analogy with Eqs. (7.44)
and (7.45), we can express the detector intensity for a swept-source OCT as

ISS = |ψR(t) + ψS(t)|2

≈S(k)R2
R + 2S(k)RR

∞∫
−∞

RS(zS) cos (2κt(nSzS − nRzR)− ϕ2(zS)) dzS

+ S(k)

∣∣∣∣∣∣
∞∫
−∞

RS(zS) exp (2i κt nSzS − ϕ3(zS)) dzS

∣∣∣∣∣∣
2

.
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Here, we assumed that

S(k) ≈ |ψR(κR(t))|2 ≈ |ψS(κS(t))|2 ,

as S(k) is slowly varying. The time-constant phase terms ϕ2(zS) and ϕ3(zS) can
be disregarded as long as we are only interested in the image amplitude |RS(zS)|.
According to Problem 7.7, we use the simplificationRR = 1 and zR = 0 to obtain

ISS(t) =S(k) + 2S(k)

∞∫
−∞

RS(zS) cos (2κt nSzS) dzS

+ S(k)

∣∣∣∣∣∣
∞∫
−∞

RS(zS) exp (2i κt nSzS) dzS

∣∣∣∣∣∣
2

. (S7.22)

The following MATLAB code calculates the detector signal in Eq. (S7.22) for
RS = δ(zS − zSj) and nS = 1 with arm length mismatches of zSj = 100 µm,
1mm, and 10mm:

% c a l c u l a t e d e t e c t o r s i g n a l f o r z_S = 100 mic rons , 1mm,
10mm

zs = [0.1 1 10];
zoom = 0.1;
tz = tt(Nk /2*(1 - zoom ):Nk /2*(1+ zoom ) +1) ;
kz = k(Nk /2*(1 - zoom ):Nk /2*(1+ zoom ) +1) ;
Sz = S(Nk /2*(1 - zoom ):Nk /2*(1+ zoom ) +1) ;
Iz = ( ones (3 ,1) *Sz) .*(1+2* cos (2* kz ’* zs)+ abs ( exp (2* i*kz ’*

zs)) .^2) ’;
% p l o t d e t e c t o r s i g n a l f o r z_S = 100 mic rons , 1mm, 10mm
figure ();
subplot (3 ,1 ,1) ;
plot (tz *1000 , Iz (1 ,:) ); axis tight ; grid ;
title ( ’ F i g . 3 : Zoom i n t o c e n t r a l p a r t o f d e t e c t e d s i g n a l

f o r z_S = ’ );
xlabel ( ’ t i m e ( \ mus ) ’ ); ylabel ( ’ 100 \ mum ’ );
subplot (3 ,1 ,2) ;
plot (tz *1000 , Iz (2 ,:) ); axis tight ; grid
xlabel ( ’ t i m e ( \ mus ) ’ ); ylabel ( ’ 1 mm ’ );
subplot (3 ,1 ,3) ;
plot (tz *1000 , Iz (3 ,:) ); axis tight ; grid
xlabel ( ’ t i m e ( \ mus ) ’ ); ylabel ( ’ 10 mm ’ );

The resulting zoom into the central range (0.5 µs) of one sweep is shown in Figure
S7.20.

2. Reversing the direction of the frequency sweep will produce the reversed detector
output, that is, the signal is “mirrored” at the center of one sweep period. Nev-
ertheless, taking the direction of the sweep into account, the measured spectrum
as a function of the wave number will be the same. If the sweep rate is slowed
down from 200 kHz to 50 kHz, the detector output will be “stretched” 4-fold in
time. But with proper scaling, the measured spectrum will remain the same.
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Figure S7.20 Zoom into SS-OCT detector signal for various arm length differences
zSj = 100 µm, 1mm, and 10mm.

The reversed and stretched sweeps can be visualized with MATLAB in the fol-
lowing manner:

% c a l c u l a t e d e t e c t o r s i g n a l f o r r e v e r s e d k−sweep
kr = fliplr (kz);
Ir = ( ones (3 ,1) *Sz) .*(1+2* cos (2* kr ’* zs)+ abs ( exp (2* i*kr ’*

zs)) .^2) ’;
% c a l c u l a t e d e t e c t o r s i g n a l f o r s t r e t c h e d k−sweep
ks = kmin :dk /4: kmin +Dk /4;
kzs = ks(Nk /2*(1 - zoom ):Nk /2*(1+ zoom ) +1) ;
Is = ( ones (3 ,1) *Sz) .*(1+2* cos (2* kzs ’* zs)+ abs ( exp (2* i*kzs

’* zs)) .^2) ’;

Figure S7.21 shows the central part of a 200 kHz sweep for zSj = 100 µm (blue
curve) and the sawtooth of the reversed sweep at 200 kHz (red curve). Similarly,
Figure S7.22 shows the comparison of a 200 kHz sweep (blue curve) for zSj =

100 µm and a “stretched” 50 kHz sweep (red curve).

3. As in Problem P7.7, we have to replace nSzS in the expression for the detected
signal by the path length integral over the sample arm z̃S ≡

∫ zS
0
nS(z) dz for a

sample with strong refractive index variations such as the anterior segment of the
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Figure S7.21 Comparison of SS-OCT signals with forward and reverse sweep.

Figure S7.22 Comparison of SS-OCT signals for 200 kHz and 50 kHz sweeps

eye. We have

ISS(t) =S(k) + 2S(k)

∞∫
−∞

RS(zS) cos (2κt z̃S) dzS

+ S(k)

∣∣∣∣∣∣
∞∫
−∞

RS(zS) exp (2i κt z̃S) dzS

∣∣∣∣∣∣
2

.

For the first four backscattering interfaces at positions zSj , we can express the
reflection coefficient via

RS(zS) =

4∑
j=1

RSj δ(zS − zSj) .
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The integrals in the signal intensity then become summations over these four in-
terfaces so that

ISS(t) = S(k) ·

1 + 2S

4∑
j=1

RSj cos
(
2κt z̃Sj

)
+

∣∣∣∣∣∣
4∑
j=1

RSj exp
(
2i κt z̃Sj

)∣∣∣∣∣∣
2


and the path length integral can be written in terms of the four homogeneous seg-
ments

z̃Sj =

j∑
m=1

nm(zSm − zS(m−1)) .

The final expression for the signal intensity then becomes

ISS(t) =S(k) + 2S S(k)

4∑
j=1

RSj cos

(
2κt

j∑
m=1

nm(zSm − zS(m−1))

)

+ S(k)

∣∣∣∣∣∣
4∑
j=1

RSj exp

(
2i κt

j∑
m=1

nm(zSm − zS(m−1))

)∣∣∣∣∣∣
2

.

(S7.23)

The following MATLAB code computes this signal for the distances, refractive
indices, and reflection coefficients given in Problem P7.7:

% de f i n e o c u l a r d i s t a n c e s , r e f r a c t i v e i n d i c e s ,
r e f l e c t i v i t i e s

zs = [1 1.5 4.6 8.2];
ns = [1 1.3691 1.3297 1.4100];
Rs = [0.1558 0.0146 0.0293 0.0298];
% c a l c u l a t e o p t i c a l pa t h l e n g t h t o each o c u l a r i n t e r f a c e
opl = ns .* diff ([0 zs ]);
for m = 1:4; zz(m) = sum ( opl (1: m)); end
% c a l c u l a t e s i m u l a t e d d e t e c t o r s i g n a l
I1 = S .*(1+2* cos (2*k ’* zz)*Rs ’+ abs ( exp (2* i*k ’* zz)*Rs ’)

.^2) ’;
% c a l c u l a t e enve l ope o f t h e d e t e c t o r s i g n a l
Imax = S *(1+2* sum (Rs)+ sum (Rs) ^2) ;
Imin = S *(1 -2* sum (Rs)+ sum (Rs .*[1 -1 -1 -1]) ^2) ;
% p l o t d e t e c t o r s i g n a l as a f u n c t i o n o f t ime
figure ();
t = 1000* tt (1: Nk +1) ;
plot (t,I1 , ’ b l u e ’ ,t,S, ’ r e d ’ ,t,Imin , ’ g r e e n ’ ,t,Imax , ’ g r e e n ’

)
axis ([0 5 0 1.6]) ; grid
xlabel ( ’ t i m e ( \ mus ) ’ )
title ( ’ S i m u l a t e d SS−OCT d e t e c t o r s i g n a l as a f u n c t i o n o f

t i m e ’ )

Figure S7.23a shows the simulated detector signal as a function of time over one
sweep together with its envelope (green) and the source spectrum envelope (red).
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Figure S7.23 (a) Simulated SS-OCT detector signal as a function of time. (b) Interference
cross-term of SS-OCT as a function of the wave number k.

Like for frequency-domain OCT (FD-OCT), the interference cross-term can be
extracted by subtracting a second detector signal with a 180° phase shift between
the two arms of the interferometer. The resulting difference signal is then nor-
malized by the source spectrum as shown in the following section of MATLAB
code:

% c a l c u l a t e s i m u l a t e d d e t e c t o r s i g n a l w i t h 180 Â° phase
s h i f t

I2 = S .*(1 -2* cos (2*k ’* zz)*Rs ’+ abs ( exp (2* i*k ’* zz)*Rs ’)
.^2) ’;

% e x t r a c t c ross−t e rm and n o rma l i z e by t h e sou r ce
spec t r um

I = (I1 -I2) /2;
In = I./S;
% p l o t i n t e r f e r e n c e c ross−t e rm as a f u n c t i o n o f wave

number
figure ();
plot (k (1:5: Nk),I (1:5: Nk)); axis ([ min (k) max (k) -.5 .5]) ;

grid
xlabel ( ’ wave number ( 1 /mm) ’ )
title ( ’ I n t e r f e r e n c e c r o s s − t e rm ’ )

The cross-term is plotted as a function of the wave number in Figure S7.23b.
Note that by moving from Figure S7.23a to Figure S7.23b, the x-axis is converted
from time to wave number taking the functionality displayed in Figure S7.18 into
account.
Taking the Fourier transform of the normalized cross-term yields the A-scan as a
function of path length, whereas the spatial coordinate has to be scaled properly.
This is accomplished with the following MATLAB commands, which create the
A-scan plotted in Figure S7.24:

% ta ke F o u r i e r t r a n s f o rm and de t e rm i n e z−s c a l i n g
FT = abs ( ifft (In));
dz = pi/Dk; zn = 0: dz:dz*Nk;
% p l o t A−scan o b t a i n e d by F o u r i e r t r a n s f o rm
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figure ();
plot (zn ,FT , ’ r e d ’ ); grid ; axis ([0 16 0 0.16]) ;
xlabel ( ’ o p t i c a l p a t h l e n g t h (mm) ’ )
title ( ’ A−Scan o b t a i n e d by F o u r i e r t r a n s f o r m a t i o n ’ )

We note the agreement with the A-scan obtained in Problem P7.7.

Figure S7.24 A-scan derived from simulated SS-OCT signal.

Figure S7.25 A-scan from simulated SS-OCT signal with mirror image.

Let us compare this with the results of Problem P7.7. We observe that the equa-
tions describing the FD-OCT and SS-OCT cases share the same general form, where
k(t) = κt replaces the (time-)constant wave number k. In Figure S7.25, we have also
plotted the absolute magnitude of the Fast Fourier Transform (FFT) for the entire z-
range. As expected from the FFT formalism, we see the so-called mirror-image of
the reflections along z. This is due to the fact that the FFT of a real signal is conjugate
symmetric.
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P7.9
Group velocity dispersion in OCT

We assume Gaussian pulses of spectral bandwidths for various broadband
light sources (e.g., those considered in Problem P7.4.).
1. One of the arms of the OCT Michelson interferometer contains glass

(type BK7) with a (geometric) length of 10 cm. What axial loss in reso-
lution results from the group velocity dispersion (GVD) as compared to
an “empty” OCT?

2. Use the results of 1.) to estimate howmuch BK7 glass youmust place into
the reference arm of the OCT to compensate for the GVD of the eye in
the signal arm. What would be even better than BK7? As an approximate
model of the human eye, we assume as slab with a length of 24.4mm
having the same dispersion as water (aqueous humor).

Solution:

1. If material with a group velocity dispersion (GVD, see Section 7.4.3) is present
in one arm of the OCT’s Michelson interferometer, the axial resolution decreases.
This is due to the fact that the GVD causes frequency-dependent phase delays
which in TD-OCT broaden the pulse and/or lead to destructive interference in
FD-OCT. Let us consider a TD-OCT setup that contains glass (BK7) with a length
of 10 cm in its signal arm. The reference arm is assumed to be “empty”, that is
n = 1.

a) Pulse and spectral parameters:
A bandwidth of ∆λ = 200 nm leads to

∆ω =
2πc

λ2
0

∆λ .

For a Gaussian-shaped pulse, the power spectral density is given by (see also
Problem P7.2)

σ(ω) = σ0 · exp

(
−4 ln(2)

(
ω − ω0

∆ωFWHM

)2
)

. (S7.24)

b) Taylor expansion of the propagation constant up to the quadratic term:
The Taylor expansion of the wave number dispersion up to the quadratic term
in the signal arm reads

kS(ω) = k(ω0) +
∂k(ω)

∂ω

∣∣∣∣
ω=ω0

· (ω − ω0) +
1

2

∂2k(ω)

∂ω2

∣∣∣∣
ω=ω0

· (ω − ω0)2 (S7.25)

= k(ω0) + k′(ω0) · (ω − ω0) +
1

2
k′′(ω0) · (ω − ω0)2
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with

k0 = k(ω) ,

k′(ω0) =
∂k(ω)

∂ω

∣∣∣∣
ω=ω0

, and

k′′(ω0) =
∂2k(ω)

∂ω2

∣∣∣∣
ω=ω0

.

In the empty reference arm (n = 1), we have

kR(ω) = k0 +
(ω − ω0)

c
. (S7.26)

c) Auxiliary calculation: k-derivatives from the wavelength dependence of
the refractive index:
We start from

k0 = k(ω0) =
2π · n(λ0)

λ0
. (S7.27)

Thus, for the first derivative, we obtain

k′(ω0) =
∂k(ω)

∂ω

∣∣∣∣
ω=ω0

dk

dω
=

dλ

dω
· dk

dλ
= −2πc

ω2
· dk

dλ
= −λ

2

c
·

d
(
n(λ)
λ

)
dλ

= −λ
2

c

(
1

λ
· dn

dλ
− n

λ2

)
=

1

c

(
n− λ · dn

dλ

)
=

1

cg
. (S7.28)

From this follows the second derivative according to

k′′(ω0) =
∂k′(ω)

∂ω

∣∣∣∣
ω=ω0

d2k

dω2
=

dλ

dω
· dk′

dλ
= −2πc

ω2
· dk′

dλ
= −λ

2

c
· 1

2πc
·

d
(
n− λ · dn

dλ

)
dλ

= − λ2

2πc2

(
dn

dλ
− dn

dλ
− λ · d2n

dλ2

)
=

λ3

2πc2
· d2n

dλ2
(S7.29)

To determine the derivatives of the refractive indices for BK7 at a wavelength
of λ = 1300 nm, the Sellmeier dispersion formula (see also Problem P6.5)
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Figure S7.26 Setup of a Michelson interferometer consisting of a reference and a signal
arm. In the signal arm, a block of BK7 glass is placed.

with three terms

n(λ) =

√√√√1 +

3∑
j=1

Bj λ2

λ2 − Cj
(S7.30)

can be used for calculation of the refractive indices of glass in the visible
and infrared ranges. This leads to the constants (λ to be inserted in µm)
B1 = 1.03961212, B2 = 0.231792344, B3 = 1.01046945, C1 = 6.00069867,
C2 = 2.00179144 × 10−2, and C3 = 1.03560653 × 102. The values for the
derivatives dn/dλ und d2n/dλ2 can be obtained by calculating the model
curve of the refractive index n(λ) and numerically differentiating once and
twice on an accordingly dense λ-grid, respectively.

d) Calculation of the phase difference between signal arm and reference arm:
The dispersion-related phase difference between signal and reference arm is
given by

∆ξ(ω) = kL(ω) · 2zL + kG(ω) · 2zG − kR(ω) · 2zR , (S7.31)

where the index G stands for “glass” and L for “left empty”. Using the expan-
sions from Eqs. (S7.25) and (S7.26) leads to

∆ξ(ω) = kL(ω0) · 2zL + kG(ω0) · 2zG − kR(ω) · 2zR

+ k′G(ω0) · (ω − ω0) · 2zG −
1

c
· (ω − ω0) · 2zR

+
1

2
k′′G(ω0) · (ω − ω0)2 · 2zG . (S7.32)
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Due to the free choice of zR and zL, Eq. (S7.32) expressing the phase delay
between both arms can be simplified via

∆ξ(ω) = ω0 ∆tp + (ω − ω0) ·∆tg +
1

2
k′′G(ω0) · (ω − ω0)2 · 2zG .

(S7.33)

The parameters ∆tp and ∆tg can now be calculated according to Eq. (7.32),
that is,

∆tp =
kL(ω0) · 2zL + kG(ω0) · 2zG − kR(ω0) · 2zR

ω0
,

∆tg = k′G(ω0) · 2zG −
1

2πc
· 2zR .

If we compare this result with Eq. (7.32), there is a component in the phase
response between both arms which is not linear with ω and thus changes the
interference signal for ∆φ = 0, as compared to the case of two arms with
disappearing GVD or equal GVD (expressed by k′′ ). Let us now calculate the
effect of this asymmetry in the GVD on the OCT signal.

e) Calculation of the OCT signal in the presence of GVD:
As shown in Section 7.4.1, the OCT signal is given by

ITD(∆ξ) = RS Re

 +∞∫
−∞

S(ω) e−i∆ξ(ω) dω

 . (7.28)

Insertion of Eqs. (S7.33) and (S7.24) into Eq. (7.28) yields

ITD(∆ξ) =S RS Re

e−iω0∆tp

+∞∫
−∞

exp

(
−4 ln(2)

(
ω − ω0

∆ωFWHM

)2

−i(ω − ω0)∆tg − i
k′′G
2

(ω − ω0)2 · 2zG
)

dω

)
.

With the transformation ω − ω0 → ω, completing the square in the exponent,
and k′′ = k′′G, we deduce

ITD(∆ξ) =S RS Re

e−iω0tp

+∞∫
−∞

exp

(
−4 ln(2)

(
ω

∆ωFWHM

)2

− iω ·∆tg − ik′′ ω2zG

)
dω
)

=S RS Re
(

e−iω0tp exp

(
−1

4

∆t2g
β2

)
+∞∫
−∞

exp

(
−β2

(
ω +

i∆tg
2β2

)2
)

dω

)
, (S7.34)
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where

β2 =
4 ln(2)

∆ω2
FWHM

+ ik′′lG .

With the integral relation

+∞∫
−∞

e−β
2x2

dx =

√
x

β
,

Eq. (S7.34) can be written as

ITD(∆ξ) =S RS Re

e−iω0tp

√
π√

4 ln(2)/∆ω2
FWHM + ik′′zG︸ ︷︷ ︸

term I

· exp

(
−1

4

∆t2g

4 ln(2)/∆ω2
FWHM + ik′′zG

)
︸ ︷︷ ︸

term II

 . (S7.35)

Equation (S7.35) represents the OCT signal in the presence of GVD in the
signal arm. Term I describes the damping of the signal amplitude, while term
II describes the envelope of the axial PSF of the OCT in accordance with Eq.
(7.37) for the “empty” interferometer. Evidently, the signal is broadened as
compared to the “empty” Michelson. The envelope of Eq. (7.37) given by

exp

(
−1

2

∆t2g

8 ln(2)/∆ω2
FWHM

)
turns into

exp

(
−1

2

∆t2g

8 ln(2)/∆ω2
FWHM + 2ik′′zG

)
.

In addition to broadening, the complex denominator also generates frequency
modulation (chirp). For σ2

τ = 8 ln(2)/∆ω2 and τ2
GVD = 2k′′zG, the broad-

ening is determined by

1

σ2
τ + iτ2

GVD

!
=

σ2
τ

σ4
τ + τ4

GVD

− i τ2
GVD

σ4
τ + τ4

GVD

,

σ̃τ = στ ·

√
1 +

(
τ2
GVD

σ2
τ

)2

=
2
√

2 ln(2)

∆ω
·

√
1 +

(
k′′zG ∆ω2

FWHM

4 ln 2

)2

. (S7.36)
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Figure S7.26 Numerically calculated dispersion of BK 7.

Table S7.4 Numerically calculated parameters for typical OCT wavelengths.

Wavelength d2n/dλ2 k′′ Resolution ∆z Loss is resolution
(nm) (µm−2) (s2m−1) without GVD δz with GVD

(µm) (µm)

850 0.036651 3.980× 10−26 2.71 1051.0

1000 0.015464 2.735× 10−26 3.75 519.0

1300 0.005598 2.165× 10−27 6.32 19.1

Conversion to coherence lengths leads to

c∆tg = ∆Lc
!
= 2cστ ,

∆L̃c
!
= 2c · σ̃τ .

According to Eq. (S7.36), the loss in axial resolution of the OCT thus yields

δLc = ∆L̃c −∆Lc

= 4c

√
2 ln(2)

∆ωFWHM
·

√1 +

(
k′′ ·∆ω2

FWHMzG
4 ln(2)

)2

− 1

 . (S7.37)

f) Numerical calculation:
Equation (S7.29) provides to the constant k′′ for the various wavelengths. In
Figure S7.26, d2n/dλ2 is specified in µm−2 and k′′ = d2k/dω2 in s2m−1.
For the various wavelengths, we obtain the results listed in Table S7.4. Figure
S7.27 shows the broadening of the axial PSF δl − c versus the wavelength
according to Eq. (S7.37). It is evident that the GVD almost disappears at λ =

1300 nm, but is not negligible in the visible range. Consequently, at around
1300 nm, we find no noticeable pulse broadening.
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Figure S7.27 Broadening of the axial PSF according to Eq. (S7.37).

2. The parameters for the Sellmeier equation

n(λ) =

√√√√1 +

3∑
j=1

Bj λ2

λ2 − Cj

for the refractive index the values can be obtained from the measurement data
for the optical dispersion of water14). They read B1 = 0.5684027565, B2 =

0.1726177391, B3 = 2.086189578 × 10−2, C1 = 5.101829712 × 10−3, C2 =

1.821153936× 10−2, and C3 = 2.620722293× 10−2.
The values for the derivatives dn/dλ can be obtained by calculating the model
curve of refractive index n(λ) and numerically differentiating it on a sufficiently
dense λ-grid. The diagram in Figure S7.28a shows the wavelength-dependence
of the refractive index of water and the various operating wavelengths of typical
OCT systems.
The second derivative of the refractive index with respect to λ (Figure S7.28b,
left graph) – which corresponds to the curvature of n(λ) – is responsible for the
GVD effects. The right graph in Figure S7.28b shows the constant k′′ = d2k/dω2

in units of 10−27 s2m−1 for BK7 (red) and water/eye tissue (blue). According to
Eq. (S7.32), GVD compensation occurs if a material is inserted into the refer-
ence arm such that the product k′′AzA = k′′GzG remains constant. It is evident
that the different signs of k′′ at 1300 nm make compensation impossible for BK7
(Table S7.5). In this case, the best solution is to use a water cuvette. At the other
wavelengths, good compensation is possible. Of course, the calculations are only
approximations, since ocular tissue has not been taken into account.

14)Masahiko, D. and Masumura, A. (2007) Measurement of the refractive index of distilled water from the
near-infrared region to the ultraviolet region. Appl. Opt., 46, 3811–3827.
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Figure S7.28 (a) Refractive index profile n(λ)of water. (b) Dispersion of water in
comparison to BK7.

Table S7.5 Dispersion for typical OCT wavelengths.

Wavelength (nm) k′′A k′′G zG/zA zG (mm)

850 2.342 3.980 0.588 14.4

1000 0.417 2.735 0.152 3.72

1300 −10.879 0.217 impossible impossible
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P7.10
Signal-to-noise ratio

Calculate the SNR for TD-OCT, FD-OCT, and SS-OCT for shot-noise lim-
ited detection (see Eqs. (7.58) and (7.59)).

Solution:15)

We define the signal-to-noise ratio (SNR) as the signal power divided by the noise
process variance. As the autocorrelation function of a signal and its frequency spec-
trum are linked via the Wiener-Khinchin theorem (Section A.2.4.2), an analogous
relationship also applies in optics for the optical spectrum and the wave function.
This means that we can expand our TD-OCT theory to an appropriate FD-OCT the-
ory and vice versa.

a) Time Domain:
We start with

ψR(ω) = ψR,0(ω)RR e2ikR(ω)zR−iωt , (7.41)

ψS(ω) = ψS,0(ω)

+∞∫
−∞

RS(zS) e2ikS(ω)zS−iωtdzS . (7.42)

The variablesRR andRS denote the reflectance in the reference and sample arms,
respectively. In the following, we describe the backscattering planes (indicated by
i) in the sample by sequence of planes with backscattering coefficients RS(zS) at
position zSi, that is, RS(zS) =

∑
iRS(zSi)δ(zS − zSi). Therefore, the backscat-

tered field is given by

ψS(ω) = ψS,0(ω)
∑
i

RS(zSi) e2ikS(ω)zSi−iωt . (S7.38)

The detector photocurrent is defined as

ID(ω) =
eη

hν0
〈|ψR(kc) + ψS(kc)|2〉 , (S7.39)

where the angular brackets denote integration over the response time of the de-
tector, k = 2π/λ = ω/c the wave number, e the electric charge, η the detector
quantum efficiency, h Planck’s constant and ν0 the mean frequency of the power

15) Support by Herbert Gross (Friedrich Schiller Universitaet Jena, Germany) greatly acknowledged.
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spectrum. Inserting Eq. (S7.38) into Eq. (S7.39) leads to

ID(k) =
eη

hν0

[
S(k)(R2

R +R2
S1 +R2

S2 + . . .)
]

+
eη

hν0

[
S(k)

∑
i

RRRS(zSi)[2 cos(2k(nSzSi − zR)]

]

+
eη

hν0

[
S(k)

∑
i

RS(zSj)RS(zSi)[2 cos(2k(nSzSi − nSzSj)]

]
(S7.40)

S(k) = 〈
∣∣ψS,0(ω)

∣∣2〉 = 〈
∣∣ψR,0(ω)

∣∣2〉 is the power spectral density of the light
source. Here, a Gaussian spectrum is considered so that

S(k) = exp

(
−4 ln(2)

(
k − k0

∆kFWHM

)2
)

. (S7.41)

In TD-OCT, the wave number-dependent detector current ID(k) is captured on a
single receiver while the reference delay zR is scanned to reconstruct an approxi-
mation for the internal sample reflectance profileRS(zS). The A-scan is obtained
by summing Eq. (S7.40) over all wave numbers k. Hence, we have

ID(zR) =
eη

hν0
S(k)(R2

R +R2
S1 +R2

S2 + . . .)

∞∫
0

S(k) dk

︸ ︷︷ ︸
term I

+
eη

hν0

∞∫
0

S(k)
∑
i

RRRS(zSi)[2 cos(2k(nSzSi − zR))] dk

︸ ︷︷ ︸
term II

+
eη

hν0

∞∫
0

S(k)
∑
i 6=j

RS(zSj)RS(zSi)[2 cos(2k(nSzSi − nSzSj))] dk

︸ ︷︷ ︸
term III

.

(S7.42)

Term II in Eq. (S7.42) contains all the information about the backscattering. It
is also called the interference or cross-correlation term. Let us first evaluate the
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integral of this second term:

eη

hν0

∞∫
0

S(k)
∑
i

RRRS(zSi)[2 cos (2k(nSzSi − zR))] dk

= 2
eη

hν0

∑
i

RRRS(zSi)

∞∫
0

S(k) cos(2k(nSzSi − zR))dk

= 2
eη

hν0

∑
i

RRRS(zSi)

∞∫
0

exp

(
−4 ln(2)

(
k − k0

∆kFWHM

)2
)

· cos(2k(nSzSi − zR)) dk .

Here, we have substituted S(k) by its expression in Eq. (S7.41). The integral can
be further evaluated via
∞∫
0

exp

(
−4 ln(2)

(
k − k0

∆kFWHM

)2
)

cos(2k(nSzSi − zR))dk

=
1

2

∞∫
0

exp

(
−4 ln(2)

(
k − k0

∆kFWHM

)2
)(

eik∆zSi + e−ik∆zSi
)

dk

=
1

4

+∞∫
−∞

exp

(
−4 ln(2)

(
k − k0

∆kFWHM

)2
)(

eik∆zSi + e−ik∆zSi
)

dk

=
1

4

√
π

ln(2)

∆kFWHM

2
exp

(
−∆k2

FWHM

4 ln(2)
∆z2

Si

)
·
(

eik0∆zSi + e−ik0∆zSi
)

=
1

2
S0 exp

(
−∆k2

FWHM

4 ln(2)
∆z2

Si

)
cos(k0∆zSi) ,

where

∆zSi = 2(nszSi − zR)

and

S0 =

√
π

ln(2)

∆kFWHM

2
=

∞∫
0

S(k) dk .

S0 represents the spectrally integrated power emitted by the light source. Finally,
we thus obtain

ITD(zR) =
eη

hν0
(R2

R +R2
S1 +R2

S2 + . . .)S0

+
eη

hν0

∑
i

RRRS(zSi)S0 exp

(
−∆k2

FWHM

2 ln(2)
(nSzSi − zR)2

)
· cos(2k0(nszSi − zR)) .
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Next, we assume a single sample reflector at the position zS. The photocurrent
then becomes

ITD(zR) =
eη

hν0
(TRTS)(R2

R +R2
S1 +R2

S2 + . . .)S0

+
eη

hν0
(TRTS)RRRSS0 exp

(
−∆k2

FWHM

2 ln(2)
(nSzSi − zR)2

)
· cos [2k0(nSzS − zR)] .

Here, we have now taken into account that the sample and reference arms have
different overall transmittances (losses and different beam splitter reflectances)
which we describe again by field transmittances. The instantaneous power inci-
dent in the sample and reference arms isP0 = S0/2. The mean square peak power
occurs at nSzS = zR and equals

〈ITD〉2 =

(
eη

hν0

)2

(TRTS)2P 2
0R

2
RR

2
S .

For shot noise-limited detection, the noise variance in an optical receiver is given
by

σ2
sh = e〈ITD〉B =

e2η

hν0
(TRTS)P0R

2
RB

in which e is the electric charge, 〈ITD〉 the mean photo detector photocurrent, and
B the electronic detection bandwidth. The signal-to-noise ratio for shot-limited
detection is

SNRTD−OCT =
〈ITD〉2

σ2
sh

= (TRTS)
η

hν0B
P0R

2
S . (S7.43)

If we use intensity and transmittance quantities T = TRTS and RS = R2
S and a

perfect 50:50 beam splitter, that is, T = 1/4, we find

SNRTD−OCT =
〈ITD〉2

σ2
sh

=
T ηRS

hν0B
P0

b) Frequency-Domain OCT (FD-OCT):
The sample version of the spectral interferogram in FD-OCT systems is (cross-
correlation term in Eq. (S7.40))

IFD[kn] =
1

2

eη

hν0
P [kn]

·

[
R2

R +R2
S1 + . . .+

∑
i

RRRS(zSi)[2 cos(2kn(nSzSi − zR)]

]
.

(S7.44)

Here, P [kn] = S(k)|k=kn
/2 is that portion of the instantaneous power incident

on the sample that corresponds to the n-th spectral channel of the spectrometer.
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In this case, with discrete spectrometer channels, the inverse Fourier transform
(IFT) operation is implemented as an inverse Discrete Fourier Transform (DFT)
which reads

iD[zn] =

N∑
n=1

IFD[kn] e−iknzn/N .

In the case of a single sample reflector at the position zS and a source with a
Gaussian intensity spectrum, the peak value of IFD[kn] occurs when zn = nSzS−
zR = 0. Therefore, we have

iD[zn = 0] =
eη

hν0
RRRS

N∑
n=1

P [kn] .

As we assume that each channel has equal power in it, we finally obtain

iD[zn = 0] =
eη

hν0
RRRSNP [kn] ,

where N is the maximum spectral channel number of the spectrometer. The si-
nusoidal spectral interference pattern in each separated detection channel from a
single reflector adds coherently to give a peak signal power much greater than the
signal power in each channel alone. The mean peak power is then

〈iD〉2 = (iD[zn = 0])2 =

(
eη

hν0
RRRSNP [kn]

)2

.

In order to evaluate the SNR in FD-OCT, we have to generalize our interferogram
signal described by Eq.(S7.44) by adding an uncorrelated Gaussian white noise
termα[kn]. α[kn] has a zeromean value and a standard deviation σ[kn]. Assuming
RR � RS in the shot noise-limited detection, it follows that

σ2[kn] =
e2η

hν0
P [kn]R2

RBFD .

The noise in each spectral channel is uncorrelated. Thus, the noise variances add
incoherently in the IFT to give

σ2[zn] =

N∑
n=1

σ2[kn] =
e2η

hν0
P [kn]R2

RBFDN .

Hence, we finally obtain the SNR of a FD-OCT

SNRFD−OCT =
〈iD〉2

σ2[zn]
=

η

hν0

RS

BFD
P [kn]N . (S7.45)

c) Evaluation of bandwidths BTD−OCT, BFD−OCT, and BSS−OCT :
In TD-OCT, the reference arm scans over a depth range of zmax during the A-scan
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acquisition time ∆t with velocity v = zmax/∆t. The reference light frequency is
Doppler shifted by

fD =
2v

λ0
=
k0zmax

π∆t
.

The FWHM signal power bandwidth is ∆fD = ∆kFWHMzmax/(π∆t), and the
optical detection bandwidth is thus

BTD−OCT ≈ 2
∆fFWHMzmax

π∆t
. (S7.46)

For an FD-OCT system, where all spectral channels are illuminated and detected
simultaneously, the power per spectral channel is the total power divided by the
number of channelsN , that is, IFD[kn] = P0/N . This also holds for the detection
bandwidth determined by

BFD−OCT =
BTD−OCT

N
≈ 2

∆fFWHMzmax

Nπ∆t
. (S7.48)

This can also be understood by the fact that in FD-OCT the signals from each
channel are integrated over the entire A-scan time. For an SS-OCT system, the
allowable sample illumination power for each spectral channel is the same as the
total illumination power in TD-OCT, since only one channel is illuminated at a
given point in time. Thus, PSS−OCT[kn] = P0. The detection bandwidth is SS-
OCT is limited by an analog-to-digital sampling frequency

fs =
N

∆t
= 2

∆fFWHMzmax

∆t
.

When we assume a scanning range of ∆k = 2∆kFWHM and a detection band-
width of BSS−OCT = fs/2, we find

BSS−OCT = BTD−OCT = 2
∆kFWHMzmax

π∆t
. (S7.49)

From this, we find for the SNR of an SS-OCT

SNRSS−OCT = SNRFD−OCT =
η

hν0

RS

BTD
P0N (S7.50)

After all, we find the simple relationship

SNRFD−OCT = SNRSS−OCT = SNRTD−OCT ,

as discussed in Section 7.4.4. Please note that Eqs. (7.58) and (7.59) suggest an
improvement of sensitivity by a factor of N . Due to the nature of the FFT, FD-
OCT produces redundant data for positive and negative frequencies. Thus, the
real improvement is only N/2. However, even a factor of N/2 is too optimistic,
as this would assume that the power is equal in each spectral channel (rectangular
power spectrum). A more realistic Gaussian spectrum would reduce the sensitiv-
ity advantage by approximately another factor of 2.
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P7.11
Light sources for OCT

1. What can be done to avoid any optical feedback from the Fresnel reflec-
tion of the fiber into which the SLD light should be coupled in?

2. Calculate from the spectrum in Table 7.4 the autocorrelation function and
the OCT interference signal. Do a best fit to the spectrum by assuming
a sum of two spectrally shifted Gaussian beams. What is the effect of
the trough? How do the autocorrelation function and interference signal
change if the the trough becomes deeper? What can you say about the
coherence length? Alternatively you may use numerical methods (FFT)
to simulate the influence of the shape of the spectrum on autocorrelation
function and interference signal.

3. Calculate numerically and assume as Gaussian fit from the spectra in Fig-
ure 7.20 the autocorrelation functions and the OCT interference signals.
What is the difference between the numerical result and the Gaussian ap-
proximation? Why does the autocorrelation function of the SLD exhibit
side lobes?

Solution:

1. The geometry of the SLD has to be chosen such that one can avoid any optical
feedback from the Fresnel reflection of the fiber end facets. We distinguish be-
tween two main options:

• “Angled” SLD,where the activewaveguide is tilted versus the SLD crystal facet.
• “Ends” SLD, where the ends of the SLD active region are followed by a rela-
tively long “transparent window” region and/or “integrated” absorbing region
on the backside of SLD waveguide.

All modern SLDs are based either on the “angled” or “transparent window” or
“integrated absorber” approach, or on their combination.

2. Let us simulate the autocorrelation function and the OCT interference spectrum.
For this purpose, we assume the intensity spectrum to be the sum of two shifted
Gaussian-shaped spectra. The total intensity spectrum is defined as

σ(ω) = σ01 exp

(
−4 ln(2)

(
ω − ω01

∆ω1

)2
)

+ σ02 exp

(
−4 ln(2)

(
ω − ω02

∆ω2

)2
)

(S7.51)

in which ω = 2πc/λ is the angular frequency. The simulated spectrum shown in
Figure S7.29 has been obtained by applying the following MATLAB code:

% u n i t l e n g t h s a re i n m i l l i m e t e r
c = 3 e14 ; % Speed o f l i g h t (mm/ s )
Npoints = 2^10; % Number o f c hanne l s
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Figure S7.29 Intensity spectrum of the Thorlabs SLD 1325

wl_min = 1.0; % Minimum wave l eng t h v a l u e
wl_max = 1.9; % Maximum wave l eng t h v a l u e
wl_range = ( wl_min :( wl_max - wl_min )/( Npoints - 1): wl_max )

; % Wave leng th range
Omega_range = 2* pi*c./ wl_range ; wlo = 1.325; % Angu l a r

f r e q u e n c y range : omega
delwl_01 = 65e -3; % FWHM o f t h e f i r s t Gauss ian f i t t i n g

spe t rum
wl_o1 = wlo -40e -3; % Cen t r ed a n g u l a r f r e q u e n c y o f t h e

f i r s t f i t t i n g
delwl_02 = 100e -3; % FWHM o f t h e second Gauss ian f i t t i n g

spe t rum
wl_o2 = wlo + 40e -3; % Cen t r ed a n g u l a r f r e q u e n c y o f t h e

second f i t t i n g
Z2max = Npoints /2* wlo ^2/( wl_max - wl_min ); % Maximum Z

dep th : 2∗Zmax
delay_range = -Z2max :2* Z2max /( Npoints -1) : Z2max ; % Depth

range −2Zmax − 2Zmax
delomg_01 = 2* pi*c/ wlo ^2* delwl_01 ; % F i r s t a n g u l a r

f r e q u e n c y FHWM range
Omega_o1 = 2* pi*c./ wl_o1 ; % F i r s t c e n t r e d a n g u l a r

f r e q u e n c y
delomg_02 = 2* pi*c/ wlo ^2* delwl_02 ; % Second a n g u l a r

f r e q u e n c y FHWM range
Omega_o2 = 2* pi*c./ wl_o2 ; % Second c e n t r e d a n g u l a r

f r e q u e n c y
S1 = exp ( -4* log (2) / delomg_01 ^2.*( Omega_range - Omega_o1 )

.^2) ;
S2 = 1.25* exp ( -4* log (2) / delomg_02 ^2.*( Omega_range -

Omega_o2 ) .^2) ;
S = (S1+S2);
plot ( wl_range , S/( max (S)-min (S)));



72 Solutions to Problems – Optical Devices in Ophthalmology and Optometry

The autocorrelation function is defined as the inverse Fourier transform of the
intensity spectrum, that is,

G(∆t) =

+∞∫
−∞

σ(ω)e−iω∆tdω

=σ01

∫
exp

(
−4 ln(2)

(
ω − ω01

∆ω1

)2
)

e−iω∆tdω

+ σ02

+∞∫
−∞

exp

(
−4 ln(2)

(
ω − ω02

∆ω2

)2
)

e−iω∆tdω . (S7.52)

We now evaluate the first integral of Eq.(S7.52):
+∞∫
−∞

exp

(
−4 ln(2)

(
ω − ω01

∆ω1

)2
)

e−iω∆t dω

= e−iω01∆t exp

(
− ∆ω2

01

16 ln(2)
∆t2

) +∞∫
−∞

exp

(
−4 ln(2)

∆ω2
01

(
χ+

i∆t

sin(2)
∆ω2

01

)2
)

dχ

=

√
π

ln(2)

∆ω01

2
e−iω01∆t exp

(
− ∆ω2

01

16 ln(2)
∆t2

)
. (S7.53)

By substituting Eq. (S7.53) into Eq. (S7.52), we obtain the autocorrelation func-
tion

G(∆t) =σ01

√
π

ln(2)

∆ω01

2
e−iω01∆t exp

(
− ∆ω2

01

16 ln(2)
∆t2

)
+ σ02

√
π

ln(2)

∆ω02

2
e−iω02∆t exp

(
− ∆ω2

02

16 ln(2)
∆t2

)
, (S7.54)

which has a complex value. As a consequence, it can be written as

G(∆t) = a+ ib

The envelope of G(∆t) is known as the autocorrelation function, that is, ENV =

|G(∆t)|. The interference spectrum is then given by

INT = ENV · cos

[
arctan

(
b

a

)]
. (S7.55)

The following MATLAB code illustrates the corresponding evaluations:
% A u t o c o r r e l a t i o n f u n c t i o n and i n t e f e r e n c e spec t r um
IFT_S = fftshift ( ifft (S)); % SLD 1325
Envelop_g = abs ( IFT_S ); % a u t o c o r r e l a t i o n f u n c t i o n
The_phase = angle ( IFT_S ); % phase o f t h e i n t e r f e r e n c e

s i g n a l
Interf_signal = ( Envelop_g /( max ( Envelop_g )-min ( Envelop_g

))).* cos ( The_phase ); % i n t e r f e r e n c e spec t r um
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Figure S7.30 (a) Autocorrelation envelope. (b) Intensity spectrum.
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Intensity spectrum of Thorlabs SLD 1325 Intensity spectrum of Thorlabs SLD 1325
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Figure S7.31 Comparison of two intensity spectra. (a) Small trough with σ01 = 1.0 and
σ02 = 1.25. (b) Large trough with σ01 = σ02 = 1. Here, the following data were used:
delwl_01 = 65e-3, delwl_02 = 100e-3, wl_01 = wlo -70e-3, and wl_02 = wlo + 70e-3.
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Figure S7.32 Envelopes for (a) a small and (b) a large trough.

In Figures (S7.30) and (S7.31), the autocorrelation envelope and the intensity
spectrum are shown, respectively. Figures (S7.31) – (S7.33) compare the inten-
sity spectra, envelopes, and interference spectra for small and large troughs. In
conclusion, the autocorrelation function sidelobes become larger for an increasing
trough. In addition, the interference spectrum presents more sidelobes in the case
of a large trough. Due to the overall broadened spectrum, however, the coherence
length decreases. Thus, the overall broadening compensates “the trough effect”,
which means that it is useful to use such diodes in OCT applications.
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Figure S7.34 Intensity spectrum of the Thorlabs SLD 1325 (blue) and a Gaussian shape
fit (red).
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Figure S7.35 Autocorrelation function of (a) the Thorlabs 1325 SLD and (b) a Gaussian
function.

3. Now we want to compare the Thorlabs SLD 1325 (spectrum shown in Figure
S7.34) with a Gaussian-shaped spectrum. From Figures (S7.35) and (S7.36) we
can conclude that the autocorrelation function of the Thorlabs 1325 exhibits pro-
nounced sidelobes due to its non-Gaussian spectrum.

P7.12
Optical and acoustic biometry

Show that the correlation displayed in Figure 7.36b follows directly from
Figure 7.36a. Estimate the slope of the correlation curve.

Solution:

From Figure S7.37, we can derive the relationship between L′eye,opt and Leye,ac. We
have

L′eye,opt =
Leye,ac

cosκ
.
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Figure S7.36 Interference spectrum of (a) the Thorlabs 1325 SLD and (b) the Gaussian
spectrum for comparison.

Figure 7.36 (a) Axial eye lengths as measured by optical and acoustical biometry and (b)
their correlation.

Figure S7.37 Axis and cardinal points of the eye.
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With κ = 5°, we find

Leye,ac = 0.996 · L′eye,opt .

The actual value of Leye,opt measured by an optical biometer is even larger than the
distance displayed in Figure 7.36b because of two reasons:

1. The optical A-scan is aligned to the fovea, adding the depth of the retinal pit to
the measured length.

2. The strongest optical backscattering signal comes from the retinal pigment epithe-
lium (RPE), whereas an ultrasound A-scan detects the inner limiting membrane
(ILM). This adds the retinal distance at the center of the fovea to the optically
measured length.

When the axial length of the simplified Gullstrand eye are used and a total contri-
bution of 250 µm from both effects is assumed, we can introduce a corresponding
correction factor

L′eye,opt =
23.896

24.146
Leye,opt .

In summary, we thus find

Leye,ac = 0.986Leye,opt .

As discussed in Section 7.7.2, optical biometers are typically calibrated to agree with
high-precision ultrasound measurements16). Hence, the output of a commercial opti-
cal biometer would ideally yield the same result as a perfectly calibrated ultrasound
device. Systematic differences such as the one shown between the commercial biom-
etry devices ZEISS IOLMaster and Accutome A-Scan Plus can be attributed to a
number of factors:

• Ultrasound biometers have to be calibrated against a reference normal. Not all com-
mercial ultrasound devices agree perfectly with each other when measured versus
the same normal.

• The retinal shape and thickness vary as a function of axial length. Differences in
the relative lengths of the axial segments (cornea, aqueous humor, lens, vitreous)
also affect the average refractive index (and velocity of sound). A linear fit be-
tween optical and ultrasound axial length measurements is thus only an empirical
approximation.

• For a given axial length, retinal shape and thickness vary between subjects, depend-
ing, e.g., on age and ethnicity and thus show a distribution about a mean value. In
addition, they can be affected by conditions such as staphyloma or macular edema.
The result of any calibration can thereby depend on the subject population of the
clinical study.

16) Haigis, W., Lege, B., Miller, N., and Schneider, B. (2000) Comparison of immersion ultrasound biom-
etry and partial coherence interferometry for intraocular lens calculation according to Haigis, Graefe’s
Arch. Clin. Exp. Ophthalmol., 238, 765–773.
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Figure S7.38 Simplified eye model used in Problem P7.13.

P7.13
Intraocular lens formula

Derive the IOL formula (7.64) from the model shown in Figure 7.39. How
does the calculation change if we use a more elaborated model, in particular,
if both cornea and lens are treated as thick lenses.

Solution:

For the derivation of the intraocular lens (IOL) formula, we use the simplified eye
model shown in Figure S7.38.

Step1:
Determination of the image formation of an object at optical infinity which is imaged
by the cornea. The cornea is assumed to be a thin lens. Equation (A14) yields

nair

s
+D′c1 =

nac

s′
,

where s and s′ are the object distances from the first and back corneal surface, re-
spectively. D′c1 denotes the corneal optical power. nair and nac are the refractive
indices of air and the anterior chamber, respectively. In the case of emmetropia, s
tends to infinity. Therefore, s′ = nac/D′c1.

Step 2:
Next, we determine the effect of the IOL power. As the image location is known
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(location on the retina), we can use Eq. (A14) once again and obtain
nac

s′ − Lac
+D′1 =

nv

Leye − Lac
.

Here, nv is the refractive index of the vitreous. After re-arranging this equation, the
IOL power necessary to achieve emmetropia follows to

D′1 =
nv

Leye − Lac
− nac

nac/D′ac − Lac
. (S7.56)

In the case of a “thick” cornea, the corneal total refractive power is given by Eq.
(2.20), that is,

D′c = D′a +D′p −
Lc

nc
D′aD′p ,

where D′a and D′p denote the refractive power of the corneal front and back surfaces,
respectively. nc and Lc are the refractive index and the thickness of the cornea.
Hence, Eq. (S7.56) will be modified by replacing D′c1 by the total corneal total re-
fractive power D′c.

P7.14
Intraocular lens power determination with biometry

Estimate the uncertainties in the determination of the IOL power which result
from uncertainties in the measurement of the biometric parameters:
1. eye length uncertainty: 10 µm and 50 µm
2. uncertainty of the anterior chamber depth: 10 µm and 50 µm
3. corneal radius
Which other factors influence the calculated power of an IOL?

Solution:

1. In Problem P7.13, we derived

D′1(Leye) =
nv

Leye − Lac
− nac

nac/D′c1 − Lac
.

The uncertaintly to be considered is the eye length Leye. Therefore, the uncer-
tainty formula is obtained by differentiation with respect to Leye. We have

∆D′1 =

∣∣∣∣ dD′1
dLeye

∣∣∣∣∆Leye , with

dD′1
dLeye

= − nv

(Leye − Lac)2
and

∆D′1 =
nv

(Leye − Lac)2
∆Leye .
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For the parameters of the Gullstrand Eye #1 for relaxed vision (Table 2.1) and
∆Leye = 10 µm, 50 µm, we obtain

∆D′1 = 0.03 . . . 0.16 D .

2. Now, the IOL power is a function of Lac, and the corresponding uncertainty is

∆D′1 =

∣∣∣∣d∆D′1
dLac

∣∣∣∣∆Lac =

∣∣∣∣∣ nv

(Leye − Lac)2
− nac(

nac/D′1 − Lac
)2
∣∣∣∣∣∆Lac .

For the parameters of the Gullstrand Eye #1 for relaxed vision (Table 2.1) and
∆Lac = 10 µm, 50 µm, we find

∆D′1 = 0.013 . . . 0.066 D .

3. We assume the corneal refractive power given by Eq. (7.62), that is,

D′c1 =
0.3315

rc1
.

This yields

D′1(rc1) =
nv

Leye − Lac
− nac

nac
0.3315rc1 − Lac

.

The uncertainty in D′1 is then obtained by applying the same concept as before,
but now with respect to rc1. We then obtain

∆D′1 =

∣∣∣∣dD′1drc1

∣∣∣∣∆rc1 =

∣∣∣∣∣ nac

0.3315
· nac(

nac
0.3315rc1 − Lac

)2
∣∣∣∣∣∆rc1 .

For the parameters of the Gullstand Eye # 1 for relaxed vision (Table 2.1) and
∆rc1 = 0.02rc1, 0.1rc1, we get

∆D′1 = 1.1 . . . 5.5 D .

This error seems to be the right order of magnitude, given a corneal power in
the Gullstrand model of 43D. It is quite significant, which demonstrates that the
corneal radius measurement accuracy has a significant influence on the overall
accuracy of the IOL power measurement. Additional factors which influence the
calculated power of an IOL are
• the difference between measured anterior chamber depth before surgery and
effective lens position (ELP) of the implanted IOL after surgery. A number of
factors contribute to this, that is,
– the axial location of the lens equator of the (cataractous) crystalline lens rel-

ative to its anterior apex,
– the location of the IOL after surgery relative to the equator of the capsular

bag (depends, e.g., on IOL haptic design and capsular bag shrinkage), and
– the location of the IOL’s principal planes relative to its equator (depends on

the lens design and even varies with IOL power for a given IOL type).
• the uncertainty in the corneal thickness.
• the individual deviations from the (population) mean in the corneal front and
back surface radii (i.e., individual deviation from the ideal Gullstrand ratio).
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P7.15
Polarization-sensitive OCT

Describe the measurement concept of PS-OCT and sketch the calculation
(simulation) of an FD-signal as a function of the depolarization of a sample.
Assume a simple model for the retinal pigment epithelium consisting of two
layers with different depolarization behavior.

Solution:

In polarization-sensitive OCT (Figure 7.41), we have basically two OCT signals com-
ing back from the signal arm, mamely one for each polarization state. The general
theories for TD-OCT or FD-OCT thus apply for each polarization state separately.
For the simulation, we refer to Problem P7.7. The algorithm presented there can be
used without any changes. One just has to calculate the spectrum and the Fast Fourier
Transform (FFT) for each polarization channel separately.

P7.16
Doppler OCT

Describe the measurement principle of DOCT and calculate (simulate) the
FD-signal as a function of the blood flow of a sample. Assume a simple
model consisting of a layer in which blood flows at an angle of 45° with a
velocity of v below a layer of scattering tissue.

Solution:

Doppler OCT is based on OCT combined with laser Doppler flowmetry (LDF) and
permits the quantitative imaging of fluid flow in highly scattering media, such as
monitoring in-vivo blood beneath the skin. When light from a moving particle inter-
feres with the reference beam, a Doppler frequency shift occurs in the interference
fringe which is given by

∆νDoppler =
1

2π
(ks − ki)v . (S7.57)

ki and ks are the wave vectors of the incoming and scattered light, respectively.
v is the velocity vector of the moving particle. Since Doppler OCT measures the
backscattered light, we assume the angle between the flow and sampling beams to be
θ. The Doppler shift equation (S7.57) is then simplified by

∆νDoppler =
2v cos θ

λ0
.
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The optical system of Doppler OCT is similar to that of OCT. However, the signal
processing is different. Following the FD-OCT calculation in Section 7.4, the com-
ponent optical field at the detector after reflection from the reference arm is

ψR(ω, k) = ψR,0(ω)RR e2ik(zR+zd) e−iωt .

The component optical field at the detector after reflection/backscattering from the
sample arm is

ψS(ω, k) = ψS,0(ω)

+∞∫
−∞

RS(zS) e2ik(zS+zd) e−iωt dzS ,

where zR, zS, and zd are the geometrical length of the reference, sample, and detector
arms, respectively. RR andRS are the amplitude reflection coefficients of light which
is reflected/backscattered from the reference and sample arms, respectively. The FD-
OCT intensity is calculated according to

IFD(k) = S(k)R2
R + S(k)

∣∣∣∣∣∣
+∞∫
−∞

RS(zS) e2ik(nSzS)dzS

∣∣∣∣∣∣
2

+ 2S(k)RR

+∞∫
−∞

RS(zS) cos(2k∆z) dzS , (7.45)

where S(k) =
∣∣ψ0,R(ω)

∣∣2 =
∣∣ψ0,S(ω)

∣∣2 is the power spectral density of the low
coherent light source and ∆z = nSzS − zR the optical path difference between the
light in the sample and reference arms. The last term of Eq. (7.45) encodes the
backscattering amplitude information of the sample.
When a moving object passes through the sample volume, an additional phase
2π∆νDopplert = 2πnS(kS − ki) vt = 2nSkvt cos θ exists which adds to the station-
ary phase shift ∆z. Here, nS and v denote the refractive index of the sample and the
speed of the moving object, respectively. Therefore, the spectral domain interference
fringe signal, which is the third term in the above Eq.(7.45), becomes

IDOCT(k) = 2S(k)RR

+∞∫
−∞

RR(zS) cos (2k(∆z + 2nSv cos θt)) dzS . (S7.58)

Let us now assume a simple model of the sample which has a single layer beneath
which the blood flows at an angle of θ = 45° with a velocity v. We also assume
RS(zS) = RSδ(zS,0 − zS). Therefore, we have

IDOCT(k) = 2S(k)RRRS cos (2k(∆z + 2nSv cos θt)) . (S7.59)

With ∆z = nSzS,0 − zR, an inverse Fourier transform of the term in the brackets
in Eq. (S7.59) gives a complex signal I(∆z), containing the amplitude and phase
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information of the interference signal in time domain, that is,

I(∆z) = |I(∆z)| eiϕ(∆z)+2πi∆νDopplert .

The equivalent phase shift due to the moving object will introduce a phase change
2π∆νDopplert, on I(∆z), which is the Doppler effect. The corresponding Doppler
shift can be determined by comparing the phases between two complex signals I(∆z)

during two exposures at a same location, namely the phase change is recorded by the
product of Ij,T (∆z) and I∗(j+1),T (∆z), where ∗ denotes the conjugate operation and
T is the time interval between two exposures and determines the A-line scanning rate.
With these definitions, it follows that

Ij,T (∆z) = |I(∆z)| eiϕ(∆z)+2πi∆νDoppler jT ,

I(j+1),T (∆z) = |I(∆z)| eiϕ(∆z)+2πi∆νDoppler (j+1)T

= Ij,T (∆z)e2πi∆νDoppler T ,

Ij,T (∆z) · I∗(j+1),T (∆z) = |I(∆z)|2 e−2πi∆νDoppler T .

The Doppler shift is obtained using

∆νDoppler =
∆ϕ

2πT
=

1

2πT
arg

 1

N − 1

N−1∑
j=1

Ij,T (∆z) · I∗(j+1),T (∆z)

 ,

(S7.60)

with the number of A-scan measurements used for averaging N . T is the time du-
ration between A-scans, that is, it determines the imaging speed and the Doppler
frequency shift range, namely the velocity dynamic range because ∆ϕ can only be
correctly traced between −π and π.

P7.17
Spectroscopic OCT

Describe the idea of a measurement concept for spectroscopic OCT and
sketch the calculation of the corresponding FD-signal as a function of the
diameter of a strongly absorbing pigment sphere located inside scattering
tissue of approximately the same refractive index and with equal backscat-
tering properties.

Solution:

For spectroscopic OCT (wavelength-dependent OCT), the general theory as outlined
in Section 7.4.2. has to be modified. In Eq. (7.45), we have assumed that RS(zS) is
independent of ω or k which allowed the spectral density function of the light source
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to factor from the depth-dependent integral over the backscattering function RS(zS).
In a backscattering geometry with spectral dependence (absorption, scattering), both
amplitude and phase changes of the backscattering functionRS(zS, ω) depend on the
depth. Thus, RS(z, ω) becomes complex, and we have to write

RS(z, ω) = |RS(z, ω)| eiθ(z,ω) .

From literature ([2] in Chapter 7), we find

|RS(z, ω)| = σb(z, ω)

z2
exp

−2

z∫
0

µa(z′, ω′) dz′

 (S7.61)

and

θ(z, ω) = 2k0

z∫
0

(n(z′, ω)− 1) dz′ = 2

z∫
0

(k(ω)− k0) dz′ . (S7.62)

In most applications, Eq. (S7.62) is a nearly constant term with respect to ω in tissue
so that it is sufficient to consider Eq. (S7.61).
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