Chapter 8

Michael Kaschke, Karl-Heinz Donnerhacke and Michael Stefan Rill

Layout by Kerstin Willnauer

Functional Diagnostics

Solutions to Problems in "Optical Devices in Ophthalmology and Optometry"

Contents

- P8 Functional Diagnostics 1
- P8.1 Differential light sensitivity 1
- P8.2 Luminance 1

P8.1 Differential light sensitivity

In the ZEISS Humphrey[®] Field Analyzer HFA II-i, the maximum luminance of the light stimulus is $\mathcal{L}_{max} = 10,000$ asb. For the Haag–Streit Octopus[®], we have $\mathcal{L}_{max} = 1,000$ asb. In both devices a luminance $\mathcal{L}_b = 10 \text{ cd/m}^2$ is used for background illumination. With the HFA II-i, the examiner measures a DLS value of 30 dB. What would be the corresponding DLS value of the Octopus[®] perimeter?

Solution:

Using Eq. (8.2), we find for the threshold differential luminance $\Delta \mathcal{L}_{th}$

DLS (in dB) = 10 log
$$\frac{\Delta \mathcal{L}_{max} (\text{in cd m}^{-2})}{\Delta \mathcal{L}_{th} (\text{in cd m}^{-2})}$$
 (S8.1)

with $\Delta \mathcal{L}_{max} = \mathcal{L}_{max}$. From Eq. (S8.1), we obtain

$$\Delta \mathcal{L}_{\rm th} = \Delta \mathcal{L}_{\rm max} \cdot 10^{-\rm DLS/10}$$

Inserting the given values, we get

$$\Delta \mathcal{L}_{\rm th} = 10^4 \text{asb} \cdot 10^{-30/10} = 10 \text{ asb}$$
.

For the Octopus device, we calculate the DLS value for $\Delta \mathcal{L}_{th} = 10$ asb again using Eq. (S8.1). It follows that

DLS (in dB) = 10 log
$$\left(\frac{1000 \text{ asb}}{10 \text{ asb}}\right) = 20 \text{ dB}$$
.

P8.2 Luminance

Consider a hot tungsten platelet with a luminating area of 1 mm^2 . The platelet has a temperature of 3500 K. Under the assumption that the platelet can be considered a black body, what is its luminance? Compare this result with the maximum luminance of $\mathcal{L}_{max} = 10,000$ asb for the ZEISS Humphrey[®] Field Analyzer HFA II-i.

Solution:

According to the Stefan–Boltzmann law about the radiant emittance (intensity) emitted by a black body, we know that

$$I(T) = \sigma_b T^4 \tag{S8.2}$$

Figure S8.1 Luminous efficacy versus temperature for a black body radiator. Taken from http://en.wikipedia.org/wiki/Luminous_efficacy

with the Stefan–Boltzmann constant $\sigma_b = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$. The radiance of a black body platelet at 3500 K thus becomes

$$L_{\rm e} = I (3500K) \cdot {\rm sr}^{-1} = 8.51 \times 10^6 {\rm Wm}^{-2} {\rm sr}^{-1}$$

According to Table A4, we know that a monochromatic light source at a wavelength of 555 nm with an emitted power of $K_m = \frac{1}{683} W$ (watts) into a solid angle of 1 sr (steradian) has a luminous intensity of 1 cd (candela) or a luminous power of 1 lumen.

For polychromatic light, such as black body radiation, the conversion between radiometric and photometric quantities (Section A.2.1.5) is given by the luminous efficacy in units of lumens per watt lm/W. Photopic luminous efficacy of radiation has a maximum possible value of 683 lm/W for the case of monochromatic light at a wavelength of 555 nm (green). Scotopic luminous efficacy of radiation reaches a maximum of 1700 lm/W for narrow-band light of wavelength 507 nm. In the table below, we find calculated and measured luminous efficacies. It is clear that light energy outside the visible wavelength range (~380 nm – 750 nm) reduces the luminous efficacies. For the black body radiator, we can find in the internet the dependency shown in Figure S8.1.

Туре	Luminous efficacy of radiation (Im/W)
Typical tungsten light bulb at 2800 K	15
Ideal black body radiator at 3500 K	37
Ideal black body radiator at 7000 K	95
Ideal monochromatic 555 nm source	683

We thus find with the relation 1 W = 37 lumen = 37 cd sr, the luminance of the tungsten platelet at 3500 K to be

$$\begin{aligned} \mathcal{L} &= L_{\rm e} \cdot 37 \, {\rm cd} \, {\rm sr} = 8.51 \times 10^6 \, {\rm W} \, {\rm m}^{-2} \, {\rm sr}^{-1} \cdot 37 \, {\rm cd} \, {\rm sr} \, {\rm W}^{-1} \\ &= 3.149 \times 10^8 \, {\rm cd/m}^2 = 3.149 \times 10^4 \, {\rm sb} \\ &= \frac{3.149}{\pi} \times 10^8 \, {\rm asb} \, \approx \, 10^8 \, {\rm asb} \ . \end{aligned}$$

Compared to the maximum luminance of the ZEISS Humphrey[®] Field Analyzer HFA II-i with a maximum luminance of 10,000 asb, the tungsten platelet is about $10000 \times$ higher. For information, we give here a couple of useful relations (see also Table A4):

Radiometry:					
Radiant flux	P	W	sometimes also called "power"		
Radiant intensity	$I_{\rm e}$	$W \cdot sr^{-1}$	sometimes inadequately called "intensity"		
Radiance	L_{e}	$\mathrm{W}\cdot\mathrm{sr}^{-1}\cdot\mathrm{m}^{-2}$	sometimes inadequately called "intensity"		
(Radiant) Emittance	$W_{\mathbf{e}}, I$	${\rm W}\cdot{\rm m}^{-2}$	emitted power surface area, often called "intensity"		
(Radiant) Irradiance	$E_{\rm e}, I$	$\rm W\cdot m^{-2}$	incident power per surface area, of- ten called "intensity"		
Photometry:					
Luminous power	$\phi_{ m v}$	$\mathrm{lm}=\mathrm{cd}\cdot\mathrm{sr}$		also called luminous flux	
Luminous intensity	$\mathcal{I}_{\rm v}$	$cd = lm \cdot sr^{-1}$		an SI base unit	
Luminance	$\mathcal{L}, \mathcal{L}_v$	$cd\cdot m^{-2} = lm\cdot sr^{-1}\cdot m^{-2}$		other units are sb, asb	
Illuminance	\mathcal{E}_{v}	$l \mathbf{x} = l \mathbf{m} \cdot \mathbf{m}^{-2}$		light incident on a sur- face	

The apostilb (asb) is an older unit of luminance defined by 1 asb = $1/\pi \times 10^{-4}$ sb = $1/\pi \cdot \text{cd/m}^2$.