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PA.1
Optics on a summer day

It is a warm day and you are standing on the edge of a swimming pool. You
are wearing Polaroid sunglasses which obviously reduce the glare from sun-
light reflected from the water surface (nwater =1.33).
1. Which polarization direction is blocked by your sunglasses?
2. If the water surface is observed at a certain angle, the glare of the sunlight

is perfectly filtered out by the sunglasses. Derive the conditional equation
for this angle from the Fresnel equations (A63) – (A66).

3. When looking at the opposite side of the swimming pool, you realize that
the bottom edge appears to be at an angle of 30° below the horizontal.
But when you sit on the pool edge, the bottom edge of the opposite side of
the pool appears to be at an angle of 14° below the horizontal. Determine
length and depth of the pool. Hint: Estimate the height of your eyes above
the surface of the water when standing and sitting.

4. You now gaze directly into the sun. Estimate the time it takes for a photon
to travel from the surface of the sun to your retina. What is the additional
time delay if you are wearing sunglasses?

5. You replace your Polaroid sunglasses by a special type of filter glasses.
Only light with a wavelength of 550 nm can pass through these glasses.
Calculate the number of photons that enter your eye if you look for 0.1 s at
the sun. What energy is absorbed by your eye during that time (all photons
shall be absorbed). Hints: You need to use some results of Appendix B;
power output of the sun: Psun =4.2×1026 W; distance between Earth and
sun: dES =1.5×1011 m; pupil diameter: dp =1.5mm.

6. In order to cool down, you are jumping into the pool. As discussed in
Chapter 1, human eyes perceive color via three types of cones. Explain
why the color of an object that appears blue in air also appears blue under-
water although the speed of light (and hence its wavelength) is shortened.
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Figure SA.1 Geometrical and optical description of a person standing nearby a swimming
pool.

Solution:

1. It is the parallel polarization of the reflected light, that is, light for which the po-
larization is perpendicular to the plane of incidence (defined by the propagation
vector and the normal to the refracting surface) (Figure A.30).

2. See Problem PA.9.

3. The setup to be discussed is illustrated in Figure SA.1. We estimate the height of
your eyes above the water surface when standing and sitting to be 180 cm and 90

cm, respectively. Thus, the corresponding angles read

α1 = 30◦ ,

α2 = 14◦ .
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From Figure SA.1 we additionally deduce

sinβ1 =
sinα1

nwater
,

sinβ2 =
sinα2

nwater
,

x1 =
y1

tanα1
,

x2 =
y2

tanα2
,

bp − x1 = hp tanβ1 ,

bp − x2 = hp tanβ2 .

From these relations, we can directly calculate

bp =
x1 −

(
tan β1

tan β2

)
x2

1− tan β1

tan β2

= 4.01 m

and
hp =

bp − x1

sinβ1
= 2.33 m .

4. It takes 8 minutes for a photon to travel 150 × 106 km from the sun to the Earth.
The additional delay by the sun glasses can be calculated via (n− 1)d/c, where n
is the refractive index of the glass, d its thickness, and c the speed of light. With
reasonable values, we obtain a delay of 5 ps.

5. The power incident on the pupil of the eye is given by

Ppupil =
Apupil

Asphere
· Psun

with the surface of a sphere at the Earth’s distance from the sunAsphere = 4πd2
ES

and the cross-section of the eye pupil Apupil = πd2
p/4. The rate at which the

photons enter the eye through the pupil is given by

∆N

∆t
=

Ppupil

Ephoton

with Ephoton = hc/λ being the energy of a single photon. As a consequence, we
obtain

∆N

∆t
=
Psunλ

16hc
·
(
dp

dES

)2

≈ 1016 .

With the numerical values, we finally calculate with ∆t = 0.1 s

∆N = 7.28× 1014 ≈ 1015 .

The corresponding energy absorbed by the eye during that time is

E = ∆N · Ephoton ≈ 0.3 mJ .
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6. The photoreceptors are excited by photons of a certain energy. The energy of a
photon is given by

Ephoton = hν = h
c0
λ0

= h
cn
λn

= h
c0/n

λ0/n
.

As the photon frequency remains constant, the photon energy does not change
when it travels through a mediumwith refractive index n, although the wavelength
changes.

PA.2
Atmospheric refraction

Imagine you stand at the ocean shore to watch the setting sun. Interestingly,
you can already observe the first rays, although the sun is actually at an angle
α below the horizon.
1. Calculate the angle α(r, n, h). Assume that the Earth’s atmosphere has

a uniform refractive index (n = 1.0003) and extends to a height of h =

20 km. Beyond the atmosphere, there is vacuum. The Earth’s radius is
r=6378 km.

2. Why does the sun appear to be flattened during the setting?

Solution:

1. As shown in Figure SA.2, the rays from the sun are incident at an angle α below
the horizon. The rays are refracted at point B – assuming the atmosphere to be a
shell of height h – and reach the observer at point A. n is the refractive index of
Earth’s atmosphere and n0 that of vacuum. Applying Snell’s law at point B leads
to

n0 sin(θ + α) = n sin θ ,

n0 sin θ cosα+ n0 cos θ sinα = n sin θ ,

n0 cos θ sinα = sin θ(n− n0 cosα) ,

n0

tan θ
=

n

sinα
− n0

tanα
.

With the approximation sinα ≈ tanα ≈ α, we obtain

α =

(
n− n0

n0

)
tan θ .

For the triangle OAB, we use Pythagoras’ theorem and write

AB
2

= (r + h)2 − r2 = (2r + h)h ,

tan θ =
r

AB
=

r√
h(2r + h)

,

α =

(
n− n0

n0

)
r√

h(2r + h)
.
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Figure SA.2 Ray diagram to describe atmospheric refraction.

Using the values n = 1.0003, n0 = 1, h = 20 km, r = 6378 km, we find

α =
(

1.0003− 1

1

)
6378√

20(2 · 6378 + 20)
= 0.217◦ .

2. During sunset, the part of the sun which is exactly incident at an angle α below the
horizon is imaged on the horizon being almost perfectly flat due to the very large
radius of curvature of 6378 km. Thus, the sun appears to be flat during sunset.

PA.3
Lens maker’s equation

Derive the lens maker’s equation for a thin and a thick lens.

Solution:

Figure SA.3 shows a thick lens with thickness L. The lens with a refractive index of
n2 is embedded in a medium with a refractive index of n1. The change in ray height
at the two surfaces cannot be ignored due to the thickness of the lens. Surface 1 and
2 have a curvature of

K1 =
1

r1
, K2 = − 1

r2
,
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Figure SA.3 Light passing through a thick lens.

where r1 and r2 are the radii of curvature, respectively. At surface 1, we have

χ1 = y1K1 ,

n1χ1 = n2χ
′
1

⇒ n1

n2
χ1 = χ′1 ,

γ′1 = χ1 − χ′1 = y1K1 −
n1

n2
y1K1 .

In paraxial approximation, the relationship between the two ray heights is

y2 = y1 − Lγ′1 ,

γ′1 = χ1 − χ′1 = y1K1 −
n1

n2
y1K1 ,

y2 = y1 − Ly1K1 +
n1

n2
Ly1K1 . (SA.1)

At surface 2, we have

n2χ
′
2 = n1χ2 ,

χ′2 = y2K2 + γ′1 ,

χ2 = y2K2 + γ2 ,

n2y2K2 + n2γ
′
1 = n1y2K2 + n1γ2 ,

γ′1 =
y1 − y2

L
,

⇒ n2y2K2 +
n2y1

L
− n2y2

L
= n1y2K2 + n1γ2 . (SA.2)

Substituting y2 from Eq. (SA.1) into Eq. (SA.2) leads to

n2y2K2 + n2y1K1 − n1y1K1 = n1y2K2 + n1γ2 ,

(n2 − n1)y2K2 + (n2 − n1)y1K1 = n1γ2 .
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Dividing both sides by y1 yields

(n2 − n1)y2K2

y1
+ (n2 − n1)K1 =

n1γ2

y1
. (SA.3)

Using Eq. (SA.1) and substituting it into Eq. (SA.3) then yields

y2

y1
=

(
1− (n2 − n1)LK1

n2

)
,

(n2 − n1)

(
1− (n2 − n1)LK1

n2

)
K2 + (n2 − n1)K1 =

n1γ2

y1
,

(n2 − n1)K2 −
(n2 − n1)2LK1K2

n2
+ (n2 − n1)K1 =

n1γ2

y1
,

(n2 − n1)

n1

(
K1 +K2 −

(n2 − n1)LK1K2

n2

)
=
γ2

y1
.

The focal length of the lens is measured from the principal plane and equals

y1

f
= γ2 .

Finally, substituting for K1, K2 and f leads to

(n2 − n1)

n1

(
1

r1
− 1

r2
+

(n2 − n1)L

n2r1r2

)
=

1

f ′
.

We know from Eq. (A14) that

1

s′
− 1

s
=

1

f ′

⇒ (n2 − n1)

n1

(
1

r1
− 1

r2
+

(n2 − n1)L

n2r1r2

)
=

1

s′
− 1

s
. (SA.4)

Equation (SA.4) is called the lens maker’s equation for a thick lens. If L = 0, the
equation reduces to the lens maker’s equation for a thin lens given by

(n2 − n1)

n1

(
1

r1
− 1

r2

)
=

1

s′
− 1

s
.

An alternative approach to derive the lens maker’s equation is by using the ABCD
matrix method according to Problem PA.4.
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PA.4
Galilei’s telescope

In 1610, Galileo Galilei discovered the four moons of Jupiter using an afocal
telescope. Although such an optical system does not alter the divergence
of an incident bundle of rays, it does alter the width of the beam and thus
increases the magnification. Galilei’s device consisted of a thin, negative
lens (ocular lens with focal length: f1 = −5 cm) and a thin, positive lens
(objective lens with focal length: f2 =80 cm).
1. Derive the imaging equation of a thin lens (lens maker’s equation) by

applying Eq. (A11) twice and by using the ABCD matrix of a spherical
surface in Table A.1.

2. Use the ABCDmatrix approach to derive the imaging equation for a thick
lens (A16).

3. Derive the ABCD matrix for the Galilei telescope. What is the condition
for an afocal optical system? Was the observed image of Jupiter’s moons
upright or inverted?

4. Just one year later, Johannes Kepler showed that telescopes can also be
made of two positive lenses. The lenses were separated by the sum of
their focal lengths. Check, by using the ABCD matrix approach, whether
the observed image was upright or inverted?

5. We now use Galilei’s telescope as a laser beam expander. For this pur-
pose, we consider a Nd:YAG laser (λ=1064 nm) which emits a Gaussian
beam with a waist radius of w0 = 1.3mm. Calculate the resulting beam
diameter after passage through the afocal Galilei telescope.

6. The expanded laser beam shall be focused with another lens so that the
peak intensity does not fall below 80% within a distance of ∆z= 1mm.
What is the minimum focal length of this lens? How large is the beam
diameter at the focal point?

Solution:

1. In Example A.2 (Section A.1.3), the approach is given for a thin lens.

2. Here, we show the same approach for a thick lens. We start from Eq. (A19) with(
h′

γ′

)
=

(
A B

C D

)(
h

γ

)
= M

(
h

γ

)
. (SA.5)

The coefficients of the ABCD matrix can be generalized to

• A: Lateral magnification for γ = 0

• D: Angular magnification
• C: Refractive power for γ = 0
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A thick lens is a combination of two spherical surfaces with a finite distance L in
between. The ABCD matrix can thus be written as

M =

(
1 0

n′−n
nr2

n′

n

)
︸ ︷︷ ︸

right surface

(
1 L

0 1

)
︸ ︷︷ ︸
thickness

(
1 0

n−n′

n′r1
n
n′

)
︸ ︷︷ ︸

left surface

,

M =

(
1 0

n′−n
nr2

n′

n

)
︸ ︷︷ ︸

right surface

(
1 +

(n−n′)L
n′r1

Ln
n′

n−n′

n′r1
n
n′

)
,

M =

(
1− (n′−n)L

n′r1
Ln
n′

n′−n
nr2

(
1− L(n′−n)

n′r1

)
− n′−n

nr1
1 + L

(
n′−n
n′r2

)) . (SA.6)

Therefore, the refractive power is

1

f
= C =

n′ − n
nr2

(
1− L(n′ − n)

n′r1

)
− n′ − n

n′r1
. (SA.7)

3. The ABCD matrix is given by

M =

(
1 0

− 1
f2

1

)
︸ ︷︷ ︸
positive lens

(
1 z

0 1

)
︸ ︷︷ ︸

length

(
1 0

− 1
f1

1

)
︸ ︷︷ ︸
negative lens

(SA.8)

⇒M =

(
1− z

f1
z

z
f1f2

− 1
f1
− 1
f2

1− z
f2

)
. (SA.9)

In an afocal optical setup, the image is formed at infinity. Hence, the refractive
power is zero, that is, for an afocal system, the coefficientC = 0 and consequently

z

f1f2
− 1

f1
− 1

f2
= 0 (SA.10)

⇒ z = f1 + f2 . (SA.11)

With Eqs. (SA.9) and (SA.11), the ABCD matrix now becomes

M =

(
− f2f1 f1 + f2

0 − f1f2

)
=

(
16 75

0 0.0625

)
.

The lateral magnification is given by coefficient A so that

β = −f2

f1
=

80

5
= 16× .

Since the lateral magnification is positive, the observed image of the Jupiter
moons was upright.
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L1

L2

d

L

f2f1

2w0

Figure SA.4 Galilei’s telescope consisting of a negative and a positive lens.

4. The ABCD matrix for a telescope with two positive lenses is the same as for the
Galilei telescope. However, due to two positive lenses, the focal lengths are both
positive which renders the lateral magnification negative. As a consequence, the
image observed would be inverted.

5. The principle setup is shown in Figure SA.4. The matrix of the system reads(
A B

C D

)
=

(
1 0

− 1
f2

1

)
·
(

1 L

0 1

)
·
(

1 0

− 1
f1

1

)
=

(
1− L

f1
L

− 1
f1
− 1
f2

+ L
f1f2

1− L
f2

)
(SA.12)

The system is afocal if for γ = 0, γ′ is always zero for all ray heights h. From
Eq. (SA.5), it follows that

γ′ = C · h+D · γ .

Thus, we have an afocal system if C = 0. In our case of an afocal Galilei system,
this is equivalent to

− 1

f1
− 1

f2
+

L

f1f2
= 0

⇒ L = f1 + f2 . (SA.13)

With Eqs. (SA.12) and (SA.13), the ABCD matrix for the afocal Galilei system
then reads (

A B

C D

)
=

(
− f2f1 f1 + f2

0 − f1f2

)
.

The beam expansion A is the inverse of the angular magnification and thus given
by

1

Γ
= A = −f2

f1
=

d

2w0
=
h2

h
= 16 .
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The beam diameter then results to d = 41.6mm.

6. The evolution of the intensity of the Gaussian beam along the propagation direc-
tion is given by

I(z) =
I0

1−
(
z
zR

)2 , (SA.14)

in which zR is the Rayleigh length. Here, we assumed that the waist is located at
z = 0.
The required depth of focus of ∆z = 1mm leads to

I

(
z =

∆z

2

)
= 0.8 · I0 .

From this, we obtain

0.8 · I0 =
I0

1 +
(

∆z/2
zR

)2

⇒ 5

4
= 1 +

(
∆z/2

zR

)2

.

With ∆z = 1mm, it follows that zR = 1mm. Using the definition of the Rayleigh
length in Eq. (A83), the spot radius for a wavelength of λ = 1064 nm results to

w0 =

√
λzR
π

= 0.0184 mm ≈ 18 µm .

Therefore, at the focal spot, the beam radius is 0.0184 mm. The minimum focal
length can be derived from the equation for the divergence angle (A87) so that

ε =
λ

πw0
=
w0

zR
= 0.0184 rad .

The angle can also be calculated by using the beam diameter prior to focusing and
the focal length of the focusing lens. Then, we have

ε =
d

2f

⇒ f =
d

2ε
= 1130 mm .
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PA.5
LED–Fiber Coupling

Consider a GaAs LED (nGaAs = 3.4) with a flat surface. The setup can be
considered as a point source which is located close to the GaAs–air surface.
At a distance of 2mm, we place a silica fiber (nsilica = 1.46; core diameter
dc =1mm) which has a maximum acceptance angle of 14° in air.
1. What fraction of light (percentage) emitted by the active region of the

LED can be coupled into the fiber? How does this value change if we
fill the volume between fiber and GaAs LED with water? Neglect the
reflection losses at both media interfaces.

2. By looking at the fiber, you realize that it has a cladding. For your setup,
you need to know what kind of material has been used for the fiber. In a
specification list, you found three possible options: nc1 = 1.493, nc2 =

1.440, or nc3 = 1.430. Which cladding material has been used in this
case?

3. How can the LED fiber coupling be understood in the concept of the
Helmholtz–Lagrange invariant?

Solution:

1. A point source at the GaAs–air interface can be considered as a Lambertian radi-
ator. The latter is a light source with constant radiance L which does not depend
on the observation direction (Figure SA.5). The radiant intensity (Table A.4) in a
direction θ to the surface normal is

I(θ) = L ·A · cos θ = I0 cos θ

with A being a spherical surface. By integrating over the hemisphere, we obtain
the total power of the Lambertian radiator

P =

∫
I(θ)dΩ = I0

π/2∫
0

2π sin θ cos θ dθ dA = πI0 . (SA.15)

For a cone with half-aperture angle φ, this becomes

P = πI0 sin2 φ

⇒P ∝ I0 sin2 φ , (SA.16)

where sinφ is equal to the numerical aperture. Therefore, if the numerical aper-
ture of the point source is known, the fraction of light that can be coupled into the
fiber can be calculated.

Assuming that maximum transfer of energy is required, adapting the numerical
aperture of the Lambertian source to the fiber core gives an angle of φ = 14◦ .



Basics of Optics 13
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Figure SA.5 Emission characteristics of a Lambertian radiator. The emitted power
(represented by the height of the red arrow) to any direction determined by the angle θ.

With Eq. (SA.16) this leads to a total radiant power for the numerical aperture of

P ∝ I0 sin2 14◦

⇒P ∝ 0.058 I0 .

Hence, 6% of the light emitted by the active region of the LED can be cou-
pled into the fiber. If the volume between fiber and GaAs is filled with water,
the effective numerical aperture increases due to the higher refractive index of
water compared to air. This, in turn, leads to a higher percentage of light coupling.

2. The maximum acceptance angle of a fiber in air is given by (Figure SA.6)

amax = arcsin
√
n2

c − n2
cl . (SA.17)

With nc = nsilica = 1.46 and amax = 14◦, we obtain

ncl =
√
n2

c − sin2 14◦ ≈ 1.44 .

3. The etendue or throughput characterizes the amount of light which passes through
the system. It is determined by the area of the pupil times the solid angle subtended
by the light source as seen from the pupil. In the above scenario, the pupil was
considered to be the core of the fiber with an area of π and the solid angle being the
square of the numerical aperture. The etendue of the Lambertian source was thus
proportional to the square of the numerical aperture. For any arbitrary system,
the etendue is proportional to the square of the Helmholtz-Lagrange invariant as
given in Eq. (A.31). This is directly related to the Helmholtz-Lagrange invariant,
which is

H = y ·NA = y′ ·NA′

for a paraxial system. The low fraction of light coupled into the fiber is caused
by the etendue of the fiber being not taken into consideration. When two optical
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Figure SA.6 Geometry of GaAs LED-fiber coupling. In our case, we have αmax = 14◦.

components are combined, their etendues must be equal to maximize the amount
of transferred light. This can be facilitated by using a common pupil-like lens
to match the etendue of the source and the fiber. This is mostly implemented in
practice to achieve a higher coupling efficiency.

PA.6
Point-spread function and Strehl ratio

In practice, the Strehl ratio (or definition brightness) is defined as the nor-
malized ratio of the point-spread intensity on the axis for the real system to
the ideal system, that is,

S =
Ireal
PSF(0, 0)

I ideal
PSF (0, 0)

.

This relation is used to characterize diffraction-limited optical systems.
Write the Strehl ratio for (Fraunhofer) far field conditions by assuming
a circular, evenly illuminated pupil as a function of the wave aberration
W(xp, yp).

Solution:

The point-spread function (PSF) expressed in terms of the Fraunhofer diffraction in-
tegral (see [14]) is given by

PSF(x′, y′) =
i exp (−ikz)

λ |z| · exp

[
ik

2z
· (x2 + y2)

]
·
∫∫

U(xp, yp) · exp

[
− ik
z
· (x2 + y2)

]
dxpdyp (SA.18)
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with the complex pupil function U(xp, yp). For an evenly illuminated pupil on the
optical axis, we have

PSF(0, 0) =
i exp(−ikz)

λ |z| U0 ·
∫∫

exp(ik · W(xp, yp))dxpdyp , (SA.19)

whereW(xp, yp) is the wave abberation. With this result, the Strehl ratio is given by

S =
Ireal
PSF(0, 0)

I ideal
PSF (0, 0)

=

∣∣∫∫ exp(ik · W(xp, yp))dxpdyp

∣∣2∣∣∫∫ dxpdyp

∣∣2
=

1

A2
pupil

∣∣∣∣∫∫ exp(ik · W(xp, yp))dxpdyp

∣∣∣∣2 . (SA.20)

One can easily see the relationship between Strehl ratio and the wavefront aberration.

PA.7
Taylor expansion of wavefront aberrations

Show that only terms with the products h2, r2, and hr cosα are physi-
cally relevant for the Taylor expansion of the wavefront aberration function
W(h, r, α).

Solution:

Considering Eq. (A39) in the book, which expands the wave aberration function in a
power series in polar coordinates, it can be seen thatW depends on h, r, α. Assuming
the system to be rotationally symmetric, some parameters remain unchanged upon
rotation (rotational invariance). The squared parameter of the object height h2, the
pupil height r2, and the scalar product h · r = hr cos θ remain unchanged. Hence,
all terms of the power series expansion must be integral powers of these invariants
for rotational symmetry to be satisfied. Only these invariant terms are thus required
for the Taylor expansion of wave aberration function.
A more thorough analysis starts from Eq. (A39) and its full expansion

W(h, r, α) =
∑
l,n,m

Wlnmh
lrn cosm α

and takes rational symmetries into account, e.g.,

W(h, r, α) =W(−h, r, α) .
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PA.8
Zernike expansion of wavefront aberrations

According to Zernike, the wave aberrations for defocus and spherical aber-
rations are defined in normalized coordinates as

Wdef(r) = c02 (2r2 − 1) ,

Wsph(r) = c04 (6r4 − 6r2 + 1) .

1. For the spherical aberration across a circular pupil, calculate the peak-
valley value, the mean value, and the RMSwfe value for c04 =1.

2. When determining the Zernike coefficient, one always assumes a normal-
ized pupil radius. This reference plays a key role in the result. In reality,
the size of the pupil often cannot be determined very accurately. How
does the determination of a spherical Zernike coefficient change if the
assumed pupil size deviates by 5%? What is the associated error in the
specification of the defocus?

3. Factorize an aspherical cylinder surface into Zernike polynomials using
the equation F (x, y)=y4.

Solution:

1. The wave abberation is given by

Wsph(r) = 6r4 − 6r2 + 1 (SA.21)

a) Peak-valley value

Derivative :
dWsph

dr
= 24r3 − 12r

Extrema :
dWsph

dr
= 0 : r1 = 0; W(r1) = 1; r2 =

1√
2

; W(r2) = −1

2

Boundary value : r3 = 1; W(r3) = 1

As the extrema are −0.5 and +1, the peak-valley value isWp−v = 1.5.
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b) Mean value

W =

1∫
0

Wsph(r)2πr dr

1∫
0

2πr dr

=
1

π
·

1∫
0

(
6r4 − 6r2 + 1

)
2πr dr = 2

1∫
0

(6r5 − 6r3 + r) dr

= 2 ·
(
r6 − 3

2
r4 +

1

2
r2
)1

0
= 2 ·

(
1− 3

2
+

1

2

)
= 0

The mean value of the aberration is thus zero.
c) RMS value

W2
RMS =

1∫
0

(
Wsph(r)−W

)2
2πr dr

1∫
0

2πr dr

=
1

π
·

1∫
0

(
6r4 − 6r2 − 1

)2
2πr dr

= 2 ·
[

36

10
r10 − 9r8 + 8r6 − 3

2
r4 − 3r4 +

1

2
r2
]1
0

=
1

5

⇒WRMS =
1√
5

= 0.447

2. We take the expression for the aperture error

Wsph(r) = c04 · (6r4 − 6r2 + 1) ,

and insert a normalized radius r = ε · r with ε = 0.95, which expresses the
uncertainty in the radius. With this approach, it follows that

Wsph(r) = c04 · (6r4 − 6r2 + 1)

= c04 · (6ε4r4 − 6ε2r2 + 1) . (SA.22)

Comparing Eq. (SA.22) to the regular expression

W(r) = c04 · (6r4 − 6r2 + 1) + c02 · (2r2 − 1)

for exponents of r4 and r2 leads to

r4 : c04 =
c04
ε4

,
∆c04
c04

=
c04 − c04
c04

= 1− 1

ε4
= −0.288

r2 :
c02
c04

= 3 ·
(
ε2 − 1

ε2

)
= −0.324 .
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The error in the Zernike coefficient of spherical aberration is thus approximately
20. This demonstrates the sensitive impact of the correct pupil radius in an im-
pressive manner.

3. Here, we do not use the representation of the Zernike polynomials (as given in
Table A.3), but their equivalent representation in x-y-coordinates as given in [2],
Table 11-1. The relevant polynomials up to y4 as the largest exponent are

Z−4
4 (x, y) = y4 + x4 − 6x2y2 quatrefoil
Z−2

4 (x, y) = 4y4 − 4x4 − 4x2y2 + 3x2 − 3y2 secondary astigmatism
Z0

4 (x, y) = 6y4 + 6x4 + 12x2y2 − 6x2 − 6y2 + 1 spherical aberration

We now need to make the terms that include x4 and x2y2 disappear simulta-
neously, which leads to a condition for these three polynomials.
In the process, termswith exponents of lower-order like x2, y2, and absolute terms
are generated which, in turn, need to be compensated by lower-order polynomials.

In accordance, the following Zernike polynomials are also required to generate
the desired surface shape:

Z−2
2 (x, y) = y2 − x2 astigmatism
Z0

2 (x, y) = 2x2 + 2y2 − 1 defocus
Z0

0 (x, y) = 1 piston, constant offset

To generate the surface, we use the following composition:

F (x, y) = y4

= c−4
4 Z

−4
4 + c04Z0

4 + c−2
4 Z

−2
4 + c−2

2 Z
−2
2 + c02Z0

2 + c00Z0
0 .

Inserting the polynomials and comparing the coefficients of the same order yields
a system of linear equations given by

y4 :c−4
4 + 6c04 + 4c−2

4 = 1 (SA.23)

x4 :c−4
4 + 6c04 + 4c−2

4 = 0 (SA.24)

x2y2 :− 6c−4
4 + 12c04 − 4c−2

4 = 0 (SA.25)

x2 :− 6c04 + 3c−2
4 − c−2

2 + 2c02 = 0 (SA.26)

y2 :− 6c04 − 3c−2
4 + c−2

2 + 2c02 = 0 (SA.27)

1 :c04 − c02 + c00 = 0 . (SA.28)

The system of equations can be solved based on the linear dependence and com-
pensation effect of the higher-order exponents. Equations (SA.23) – (SA.25) can
be solved separately. The results obtained supply the necessary coefficients to
solve Eqs. (SA.26) – (SA.28). We finally obtain
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c−4
4 = − 1

2
quatrefoil

c−2
4 = 1

2
secondary astigmatism

c04 = 5
12

spherical aberration
c−2
2 = 3

2
astigmatism

c02 = 5
4

defocus
c00 = 5

6
offset

Thus, a cylindrical aspheric surface determined by F (x, y) = y4 generates astig-
matism and spherical aberration.

PA.9
Brewster angle

Derive the equation for the Brewster angle γB from Eqs. (A63) – (A66).

Solution:

According to Figure (A.30), we only have an s-component in the reflected light. Con-
sequently, Eq. (A65) becomes zero, which is equivalent to

tan(γ + γ′)→∞ .

This is, in turn, equivalent to

γ + γ′ = 90◦ or

γ′ = 90◦ − γ .

With Snell’s law given in Eq. (A2), we can write

n sin γ = n′ sin γ′

⇒ sin γ

sin(90◦ − γ)
=

sin γ

cos γ
= tan γ =

n′

n
. (SA.29)

From Eq. (SA.29), we finally obtain

γB = arctan

(
n′

n

)
.
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PA.10
Gaussian Beams

ASTRA is a television satellite which travels in a geostationary orbit (dis-
tance to sea level h= 35.8 km). The signal is transmitted via radiation with
a wavelength of λ = 2.7 cm and a transmission power of P = 100W. The
radiation can be considered as a Gaussian beam with the spatial envelope
function (A80).
1. Show that the emitted beam fulfills the paraxial approximation.
2. Calculate power and intensity received by a parabolic antenna (diameter

d=1m) located at sea level. Hint: Use the approximation 1− e−x≈x.
3. What would happen if the satellite could transmit the digital television

signal with visible light (e.g., by using an argon ion laser)?

Solution:

1. The geostationary orbit is at a distance of h = 35.8 km from sea level (h = 0).
The antenna has a diameter of

DS = 2w0 = 2 m .

The Rayleigh length is obtained by using Eq. (A83), ν = 11GHz, and λ = 2.7 cm.
Hence, we have

zR =
πw2

0

λ
=
πD2

S

4λ
= 116.4 m .

Since the antenna diameter is much bigger than the wavelength, and as the
Rayleigh length is much bigger than the antenna diameter, it is allowed to use
the paraxial approximation.

2. At a receiver on Earth, the beam diameter for h � zR is given by (see also
Eq. (A86))

2wE = 2w0 ·

√
1 +

(
h

zR

)2

≈ 2w0 ·
h

zR
= 615 km .
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Antenna

35800 km

36115 km

6400 km
48°

35° Satellite

Figure SA.7 Geometry of the ASTRA satellite travelling is a geostationary orbit.

The total received power is obtained by integration over the entire Gaussian profile
of the receiver antenna area. It is thus given by

PE =

DE/2∫
0

PS · exp

[
−2

(
r

wE

)2
]

2πr dr

= PS ·

[
1− exp

(
−2

(
DE

2wE

)2
)]

≈ 2PS ·
(
DE

2wE

)2

= 100 W · 2 · 2.28× 10−12

= 0.53 nW .

Here, we used the approximation 1 − e−x ≈ x, as DE � wE. The emitted
intensity is related to the power via

PS = I0
πw2

S

2
,

I0 =
2PS

πw2
S

=
2PS

π(DS/2)2
=

8PS

πD2
S

⇒ I =
I0

1 + (h/z0)2
=

8PS

πD2
S

·
(

1

1 + (h/z0)2

)
= 6.7× 10−10 Wm−2 .

(SA.30)

Note that the above calculation is only valid for a receiver centered on the equator.
In Karlsruhe, in southern Germany (latitude of 48°N), the receiving antenna must
be mounted at an angle of about 35°versus the vertical. Due to the oblique pro-
jection onto the surface of the Earth, a much bigger area is covered by the antenna
than the calculated 615 km, but of course also at lower powers.
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3. For the case of a green laser (λ = 514 µm), we can also use Eq. (SA.30) and
obtain

zR =
πw2

0

λ
=
πD2

S

4λ
= 6280 km ,

2wE = 2w0 ·

√
1 +

(
h

zR

)2

= 11.6 m ,

PE = PS

[
1− exp

(
−2

(
DE

2wE

)2
)]

= 1.49 W ,

I =
8PS

πD2
S

· 1

1 + (h/zR)2
≈ 8PS

πD2
S

·
(
zR
h

)2
= 1.9 Wm−2 .

Thus, the received power is much higher. However, we only reach one household
in Karlsruhe.
In reality, one would use much smaller antennas for the communication of satel-
lites with laser light. Due to zR ∝ D2

S, this would lead to shorter Rayleigh lengths
andwith the square broader spot diameters on Earth. A laser source on the satellite
with a spot diameter of 2 cm would thus have to a spot diameter of about 120 km
on Earth.

PA.11
Autocorrelation function, spectral density, and coherence length

Calculate the autocorrelation function G, the spectral density σ(ω), and co-
herence length Lc for various pulse forms and spectral distributions:
1. Gaussian pulse
2. Rectangle pulse
3. Lorentz spectrum
4. sech2 pulse
Use the definitions for G(∆t) and σ(ω) as given in Eqs. (A111) and (A109),
respectively. For the coherence length as well as the spectral density use ap-
propriate definitions, such as the full width at half maximum (FWHM), sec-
ond momentum of a normalized function, or second momentum of a squared
normalized function.

Solution:

Please refer to Problem P7.2.
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